1 |
Zhu Yongguan , Johnson T A , Su Jianqiang , et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. P. Natl. Acad. Sci. USA, 2013, 110 (9): 3435- 3440.
doi: 10.1073/pnas.1222743110
|
2 |
Zhou Lijun , Ying Guangguo , Liu Shan , et al. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China[J]. Sci. Total. Environ., 2013, 452, 365- 376.
URL
|
3 |
Zhao Lin , Dong Yuanhua , Wang Hui . Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Sci. Total. Environ., 2010, 408 (5): 1069- 1075.
doi: 10.1016/j.scitotenv.2009.11.014
|
4 |
Zhang Qianqian , Ying Guangguo , Pan Changgui , et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environ. Sci. Technol., 2015, 49 (11): 6772- 6782.
doi: 10.1021/acs.est.5b00729
|
5 |
Rodriguez-Mozaz S , Chamorro S , Marti E , et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river[J]. Water Res., 2015, 69, 234- 242.
doi: 10.1016/j.watres.2014.11.021
|
6 |
Larsson D G J , De Pedro C , Paxeus N . Effluent from drug manufactures contains extremely high levels of pharmaceuticals[J]. J. Hazard. Mater., 2007, 148 (3): 751- 755.
doi: 10.1016/j.jhazmat.2007.07.008
|
7 |
Li Zhen , Li Miao , Zhang Zhenya , et al. Antibiotics in aquatic environments of China: A review and meta-analysis[J]. Ecotox. Environ. Safe., 2020, 199, 110668.
doi: 10.1016/j.ecoenv.2020.110668
|
8 |
张佩瑶. 水热碳化技术应用于大环内酯类抗生素制药废液资源化研究[D]. 天津: 天津大学, 2018.
|
9 |
Patel M , Kumar R , Kishor K , et al. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods[J]. Chem. Rev., 2019, 119 (6): 3510- 3673.
doi: 10.1021/acs.chemrev.8b00299
|
10 |
Zhang Xin , Zhao Hongxia , Du Juan , et al. Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China[J]. Environ. Sci. Pollut. R., 2017, 24 (19): 16478- 16487.
doi: 10.1007/s11356-017-9296-7
|
11 |
Senta I , Kostanjevecki P , Krizman-Matasic I , et al. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: Possible importance of metabolites, synthesis byproducts, and transformation products[J]. Environ. Sci. Technol., 2019, 53 (13): 7463- 7472.
doi: 10.1021/acs.est.9b01420
|
12 |
Landova P , Vavrova M . A new method for macrolide antibiotics determination in wastewater from three different wastewater treatment plants[J]. Acta. Chimica. Slovaca., 2017, 10 (1): 47- 53.
doi: 10.1515/acs-2017-0008
|
13 |
Hu Jing , Zhou Juan , Zhou Shaoqi , et al. Occurrence and fate of antibiotics in a wastewater treatment plant and their biological effects on receiving waters in Guizhou[J]. Process Safe. Environ., 2018, 113, 483- 490.
doi: 10.1016/j.psep.2017.12.003
|
14 |
Faleye A C , Adegoke A A , Ramluckan K , et al. Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa[J]. Sci. Total Environ., 2019, 678, 10- 20.
doi: 10.1016/j.scitotenv.2019.04.410
|
15 |
Ben Weiwei , Zhu Bing , Yuan Xiangjuan , et al. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes[J]. Water Res., 2018, 130, 38- 46.
doi: 10.1016/j.watres.2017.11.057
|
16 |
Al-Maadheed S , Goktepe I , Latiff A B A , et al. Antibiotics in hospital effluent and domestic wastewater treatment plants in Doha, Qatar[J]. J. Water Process Eng., 2019, 28, 60- 68.
doi: 10.1016/j.jwpe.2019.01.005
|
17 |
Serrano E , Munoz M , De Pedro Z M , et al. Efficient removal of the pharmaceutical pollutants included in the EU Watch List (Decision 2015/495) by modified magnetite/H2O2[J]. Chem. Eng. J., 2019, 376, 120265.
doi: 10.1016/j.cej.2018.10.202
|
18 |
Sharma B M , Becanova J , Scheringer M , et al. Health and ecological risk assessment of emerging contaminants(pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater(drinking water) in the Ganges River Basin, India[J]. Sci. Total Environ., 2019, 646, 1459- 1467.
doi: 10.1016/j.scitotenv.2018.07.235
|
19 |
Jurado A , Walther M , Silvia Diaz-Cruz M . Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain[J]. Sci. Total Environ., 2019, 663, 285- 296.
doi: 10.1016/j.scitotenv.2019.01.270
|
20 |
谢丽, 张艺蝶, 朱雯喆, 等. 林可霉素和3种大环内酯类抗生素对厌氧消化的影响[J]. 同济大学学报(自然科学版), 2021, 49 (2): 254- 263.
|
21 |
Terzic S , Udikovic-Kolic N , Jurina T , et al. Biotransformation of macrolide antibiotics using enriched activated sludge culture: Kinetics, transformation routes and ecotoxicological evaluation[J]. J. Hazard. Mater., 2018, 349, 143- 152.
doi: 10.1016/j.jhazmat.2018.01.055
|
22 |
Xie Haiwen , Hao Hongshan , Xu Nan , et al. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: Occurrence, distribution, potential sources, and health risk assessment[J]. Sci. Total Environ., 2019, 659, 230- 239.
doi: 10.1016/j.scitotenv.2018.12.222
|
23 |
王玉玺, 丁笑寒, 王烁阳, 等. 抗生素在城市污水处理过程中的去除研究进展[J]. 环境科学与技术, 2019, 42 (5): 135- 142.
URL
|
24 |
Wang Jianlong , Chu Libing , Wojnarovits L , et al. Occurrence and fate of antibiotics, antibiotic resistant genes(ARGs) and antibiotic resistant bacteria(ARB) in municipal wastewater treatment plant: An overview[J]. Sci. Total Environ., 2020, 744, 140997.
doi: 10.1016/j.scitotenv.2020.140997
|
25 |
Wang Yongqiang , Liu Ying , Lu Shaoyong , et al. Occurrence and ecological risk of pharmaceutical and personal care products in surface water of the Dongting Lake, China-during rainstorm period[J]. Environ. Sci. Pollut. R., 2019, 26 (28): 28796- 28807.
doi: 10.1007/s11356-019-06047-4
|
26 |
He Sinan , Dong Deming , Zhang Xun , et al. Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River(Northeast China)[J]. Environ. Sci. Pollut. R., 2018, 25 (24): 24003- 24012.
doi: 10.1007/s11356-018-2459-3
|
27 |
Liang Ximei , Chen Baowei , Nie Xiangping , et al. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China[J]. Chemosphere, 2013, 92 (11): 1410- 1416.
doi: 10.1016/j.chemosphere.2013.03.044
|
28 |
Xue Baoming , Zhang Ruijie , Wang Yinghui , et al. Antibiotic contamination in a typical developing city in south China: Occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities[J]. Ecotox. Environ. Safe., 2013, 92, 229- 236.
doi: 10.1016/j.ecoenv.2013.02.009
|
29 |
Wu Chenxi , Huang Xiaolong , Witter J D , et al. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China[J]. Ecotox. Environ. Safe., 2014, 106, 19- 26.
doi: 10.1016/j.ecoenv.2014.04.029
|
30 |
Zhang Panwei , Zhou Huaidong , Li Kun , et al. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in a large shallow lake in north China[J]. Environ. Geochem. H., 2018, 40 (4): 1525- 1539.
doi: 10.1007/s10653-018-0069-0
|
31 |
张盼伟, 周怀东, 赵高峰, 等. 太湖表层沉积物中PPCPs的时空分布特征及潜在风险[J]. 环境科学, 2016, 37 (9): 3348- 3355.
URL
|
32 |
Lyu J , Yang Linshen , Zhang Lan , et al. Antibiotics in soil and water in China-A systematic review and source analysis[J]. Environ. Pollut., 2020, 266 (1): 115147.
URL
|
33 |
Perry J A , Wright G D . The antibiotic resistance "mobilome": Searching for the link between environment and clinic[J]. Front. Microbiol., 2013, 4, 138.
URL
|
34 |
Periti P , Mazzei T , Mini E , et al. Adverse-effects of macrolide antibacterials[J]. Drug Safety, 1993, 9 (5): 346- 364.
doi: 10.2165/00002018-199309050-00004
|
35 |
Fekadu S , Alemayehu E , Dewil R , et al. Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge[J]. Sci. Total Environ., 2019, 654, 324- 327.
doi: 10.1016/j.scitotenv.2018.11.072
|
36 |
王利芳. 两种亲水性离子液体印迹材料的制备及其对大环内酯类抗生素的特异识别[D]. 新乡: 河南师范大学, 2019.
|
37 |
Voigt M , Bartels I , Nickisch-Hartfiel A , et al. Elimination of macrolides in water bodies using photochemical oxidation[J]. AIMS Environ. Sci., 2018, 5 (5): 372- 388.
doi: 10.3934/environsci.2018.5.372
|
38 |
Babić S , Ćurkovic L , Ljubas D , et al. TiO2 assisted photocatalytic degradation of macrolide antibiotics[J]. Curr. Opin. Green Sust., 2017, 6, 34- 41.
doi: 10.1016/j.cogsc.2017.05.004
|
39 |
Li Meng , Yang Xiaofang , Wang Dongsheng , et al. Enhanced oxidation of erythromycin by persulfate activated iron powder-H2O2 system: Role of the surface Fe species and synergistic effect of hydroxyl and sulfate radicals[J]. Chem. Eng. J., 2017, 317, 103- 111.
doi: 10.1016/j.cej.2016.12.126
|
40 |
Moreira N F F , Sousa J M , Macedo G , et al. Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity[J]. Water. Res., 2016, 94, 10- 22.
doi: 10.1016/j.watres.2016.02.003
|
41 |
Garcia-Ivars J , Iborra-Clar M-I , Massella M , et al. Removal of pharmaceutically active compounds by using low-pressure membrane processes[J]. Desalin. Water Treat., 2017, 69, 252- 260.
doi: 10.5004/dwt.2017.0449
|
42 |
Danalioǧlu Ş T , Bayazit S S , Kerkez Kuyumcu Ö , et al. Efficient removal of antibiotics by a novel magnetic adsorbent: Magnetic activated carbon/chitosan(MACC) nanocomposite[J]. J. Molr. Liq., 2017, 240, 589- 596.
doi: 10.1016/j.molliq.2017.05.131
|
43 |
Fakhri H , Shahi A , Ovez S , et al. Bioaugmentation with immobilized endophytic Penicillium restrictum to improve quorum quenching activity for biofouling control in an aerobic hollow-fiber membrane bioreactor treating antibiotic-containing wastewater[J]. Ecotox. Environ. Safe., 2021, 210, 111831.
doi: 10.1016/j.ecoenv.2020.111831
|
44 |
Martinez-Quintela M , Arias A , Alvarino T , et al. Cometabolic removal of organic micropollutants by enriched nitrite-dependent anaerobic methane oxidizing cultures[J]. J. Hazard. Mater., 2021, 402, 123150.
URL
|
45 |
Ooi G T H , Tang K , Chhetri R K , et al. Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor(MBBR) utilising nitrifying and denitrifying processes[J]. Bioresource Technol., 2018, 267, 677- 687.
doi: 10.1016/j.biortech.2018.07.077
|
46 |
Serna-Galvis E A , Silva-Agredo J , Maria Botero-Coy A , et al. Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process[J]. Sci. Total Environ., 2019, 670, 623- 632.
doi: 10.1016/j.scitotenv.2019.03.153
|
47 |
郝彤遥, 罗晓, 赵彦, 等. 石墨烯负载TiO2光催化降解阿奇霉素废水[J]. 工业水处理, 2019, 39 (3): 84- 87.
URL
|
48 |
Yazdani A , Sayadi M H . Sonochemical degradation of azithromycin in aqueous solution[J]. Environ. Eng. Manag. J., 2018, 5 (2): 85- 92.
URL
|
49 |
Wohlmuth da Silva S , Arenhart Heberle A N , Pereira Santos A , et al. Antibiotics mineralization by electrochemical and UV-based hybrid processes: Evaluation of the synergistic effect[J]. Environ. Technol., 2019, 40 (26): 3456- 3466.
doi: 10.1080/09593330.2018.1478453
|
50 |
Kulkarni P , Raspanti G A , Bui A Q , et al. Zerovalent iron-sand filtration can reduce the concentration of multiple antimicrobials in conventionally treated reclaimed water[J]. Environ. Res., 2019, 172, 301- 309.
doi: 10.1016/j.envres.2019.02.012
|
51 |
Sbardella L , Comas J , Fenu A , et al. Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater[J]. Sci. Total Environ., 2018, 636, 519- 529.
doi: 10.1016/j.scitotenv.2018.04.214
|
52 |
曾平川. 真空紫外(VUV)耦合化学氧化协同降解废水[D]. 南京: 东南大学, 2017.
|
53 |
Wang Sitan , Li Xiaona , Zhao Huimin , et al. Enhanced adsorption of ionizable antibiotics on activated carbon fiber under electrochemical assistance in continuous-flow modes[J]. Water Res., 2018, 134, 162- 169.
doi: 10.1016/j.watres.2018.01.068
|
54 |
Zeng Shuting , Sun Jing , Chen Ziwei , et al. The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production[J]. Environ. Res., 2021, 195, 110792.
doi: 10.1016/j.envres.2021.110792
|
55 |
Li Wei , Xu Xiujuan , Lyu B L , et al. Degradation of typical macrolide antibiotic roxithromycin by hydroxyl radical: Kinetics, products, and toxicity assessment[J]. Environ. Sci. Pollut. R., 2019, 26 (14): 14570- 14582.
doi: 10.1007/s11356-019-04713-1
|
56 |
Fernandez L , Gamallo M , Gonzalez-Gomez M A , et al. Insight into antibiotics removal: Exploring the photocatalytic performance of a Fe3O4/ZnO nanocomposite in a novel magnetic sequential batch reactor[J]. J. Environ. Manage., 2019, 237, 595- 608.
doi: 10.1016/j.jenvman.2019.02.089
|
57 |
Wang Gang , Zhang Yunqi , Wang Shiyong , et al. Adsorption performance and mechanism of antibiotics from aqueous solutions on porous boron nitride-carbon nanosheets[J]. Environ. Sci. -Wat. Res., 2020, 6 (6): 1568- 1575.
URL
|
58 |
Zhou Haidong , Cao Zhencao , Zhang Minquan , et al. Zero-valent iron enhanced in-situ advanced anaerobic digestion for the removal of antibiotics and antibiotic resistance genes in sewage sludge[J]. Sci. Total Environ., 2021, 754, 142077.
doi: 10.1016/j.scitotenv.2020.142077
|
59 |
Putra E K , Pranowo R , Sunarso J , et al. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics[J]. Water Res., 2009, 43 (9): 2419- 2430.
doi: 10.1016/j.watres.2009.02.039
|
60 |
Wang Ying , Ma Xiaoguo , Peng Yuqi , et al. Selective and fast removal and determination of β-lactam antibiotics in aqueous solution using multiple templates imprinted polymers based on magnetic hybrid carbon material[J]. J. Hazard. Mater., 2021, 416, 126098.
doi: 10.1016/j.jhazmat.2021.126098
|
61 |
Liu Yaohui , Yang Qiuxia , Chen Xiaotian , et al. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips[J]. Talanta, 2019, 204, 238- 247.
doi: 10.1016/j.talanta.2019.05.102
|
62 |
Luo Yunlong , Guo Wenshan , Ngo H H , et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Sci. Total Environ., 2014, 473, 619- 641.
URL
|
63 |
Canizares P , Paz R , Saez C , et al. Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes[J]. J. Environ. Manage., 2009, 90 (1): 410- 420.
doi: 10.1016/j.jenvman.2007.10.010
|
64 |
Xu Lu , Wu Chenxi , Liu Peihua , et al. Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants[J]. Chem. Eng. J., 2020, 387, 124065.
doi: 10.1016/j.cej.2020.124065
|
65 |
Chen Fei , Liu Lianlian , Chen Jiejie , et al. Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system[J]. Water Res., 2021, 191, 116799.
doi: 10.1016/j.watres.2020.116799
|
66 |
Yao Qiufang , Fan Bitao , Xiong Ye , et al. 3D assembly based on 2D structure of cellulose nanofibril/graphene oxide hybrid aerogel for adsorptive removal of antibiotics in water[J]. Sci. Rep., 2017, 7 (1): 45914.
doi: 10.1038/srep45914
|
67 |
Liu Hui , Wei Yuanfeng , Luo Jinming , et al. 3D hierarchical porousstructured biochar aerogel for rapid and efficient phenicol antibiotics removal from water[J]. Chem. Eng. J., 2019, 368, 639- 648.
doi: 10.1016/j.cej.2019.03.007
|
68 |
Babic S , Curkovic L , Ljubas D , et al. TiO2 assisted photocatalytic degradation of macrolide antibiotics[J]. Curr. Opin. Green Sust., 2017, 6, 34- 41.
doi: 10.1016/j.cogsc.2017.05.004
|
69 |
冯奇奇. ZnIn2S4光催化降解水中痕量医药类物质双氯芬酸、红霉素、氯霉素和林可霉素的基础研究[D]. 西安: 西安建筑科技大学, 2016.
|