1 |
崔琦, 陈卓, 李魁晓, 等. 再生水系统的可靠性: 内涵及其保障措施[J]. 环境工程, 2019, 37 (12): 75- 79.
URL
|
2 |
阳春, 胡碧波, 张智. 类固醇雌激素在生活污水处理中的去除过程[J]. 中国给水排水, 2008, 24 (10): 11- 15.
doi: 10.3321/j.issn:1000-4602.2008.10.003
|
3 |
Ekpeghere K I , Sim W J , Lee H J , et al. Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment[J]. Science of the Total Environment, 2018, 640/641, 1015- 1023.
doi: 10.1016/j.scitotenv.2018.05.218
|
4 |
Ma Mei , Rao Kaifeng , Wang Zijian . Occurrence of estrogenic effects in sewage and industrial wastewaters in Beijing, China[J]. Environmental Pollution, 2007, 147 (2): 331- 336.
doi: 10.1016/j.envpol.2006.05.032
|
5 |
余薇薇, 朱家悦, 陈垚, 等. 集约化养殖场中类固醇雌激素的环境行为与处理途径[J]. 环境工程, 2017, 35 (3): 174- 178.
URL
|
6 |
林建德, 邵坚, 冯成洪, 等. 天然类固醇雌激素源解析、环境行为及其污染控制[J]. 环境科学与技术, 2012, 35 (5): 60- 64.
doi: 10.3969/j.issn.1003-6504.2012.05.014
|
7 |
都韶婷, 金崇伟, 刘越. 水体类固醇雌激素污染现状研究进展[J]. 环境科学, 2013, 34 (9): 3358- 3367.
URL
|
8 |
Su Chao , Cui Yan , Liu Di , et al. Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: Which chemicals are the prioritized ones?[J]. Science of the Total Environment, 2020, 720, 137652.
doi: 10.1016/j.scitotenv.2020.137652
|
9 |
Tan Ruijie , Liu Ruixia , Li Bin , et al. Typical endocrine disrupting compounds in rivers of northeast China: Occurrence, partitioning, and risk assessment[J]. Archives of Environmental Contamination and Toxicology, 2018, 75 (2): 213- 223.
doi: 10.1007/s00244-017-0482-x
|
10 |
Wang Wenfeng , Ndungu A W , Wang Jun . Monitoring of endocrinedisrupting compounds in surface water and sediments of the Three Gorges Reservoir Region, China[J]. Archives of Environmental Contamination and Toxicology, 2016, 71 (4): 509- 517.
doi: 10.1007/s00244-016-0319-z
|
11 |
Luo Zhoufei , Tu Yi , Li Haipu , et al. Endocrine-disrupting compounds in the Xiangjiang River of China: Spatio-temporal distribution, source apportionment, and risk assessment[J]. Ecotoxicology and Environmental Safety, 2019, 167, 476- 484.
doi: 10.1016/j.ecoenv.2018.10.053
|
12 |
Yang Yuyi , Cao Xinhua , Zhang Miaomiao , et al. Occurrence and distribution of endocrine-disrupting compounds in the Honghu Lake and East Dongting Lake along the Central Yangtze River, China[J]. Environmental Science and Pollution Research, 2015, 22 (22): 17644- 17652.
doi: 10.1007/s11356-015-4980-y
|
13 |
Lv Jian , Zhang Cui , Wu Jun , et al. Seasonal distribution, risks, and sources of endocrine disrupting chemicals in coastal waters: Will these emerging contaminants pose potential risks in marine environment at continental-scale?[J]. Chemosphere, 2020, 247, 125907.
doi: 10.1016/j.chemosphere.2020.125907
|
14 |
Wang Song , Zhu Zeliang , He Jiafa , et al. Steroidal and phenolic endocrine disrupting chemicals(EDCs) in surface water of Bahe River, China: Distribution, bioaccumulation, risk assessment and estrogenic effect on Hemiculter leucisculus[J]. Environmental Pollution, 2018, 243, 103- 114.
doi: 10.1016/j.envpol.2018.08.063
|
15 |
Huang Bin , Xiong Dan , He Huan , et al. Characteristics and bioaccumulation of progestogens, androgens, estrogens, and phenols in Erhai Lake Catchment, Yunnan, China[J]. Environmental Engineering Science, 2017, 34 (5): 321- 332.
doi: 10.1089/ees.2016.0118
|
16 |
Huang Bin , Wang Bin , Ren Dong , et al. Occurrence, removal and bioaccumulation of steroid estrogens in Dianchi Lake catchment, China[J]. Environment International, 2013, 59, 262- 273.
doi: 10.1016/j.envint.2013.06.018
|
17 |
Lei Bingli , Huang Shengbiao , Zhou Yiqi , et al. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China[J]. Chemosphere, 2009, 76 (1): 36- 42.
doi: 10.1016/j.chemosphere.2009.02.035
|
18 |
Combalbert S , Hernandez-Raquet G . Occurrence, fate, and biodegradation of estrogens in sewage and manure[J]. Applied Microbiology and Biotechnology, 2010, 86 (6): 1671- 1692.
doi: 10.1007/s00253-010-2547-x
|
19 |
Glineur A , Nott K , Carbonnelle P , et al. Development and validation of a method for determining estrogenic compounds in surface water at the ultra-trace level required by the Eu water framework directive watch list[J]. Journal of Chromatography A, 2020, 1624, 461242.
doi: 10.1016/j.chroma.2020.461242
|
20 |
Lei Kai , Lin Chunye , Zhu Ying , et al. Estrogens in municipal wastewater and receiving waters in the Beijing-Tianjin-Hebei region, China: Occurrence and risk assessment of mixtures[J]. Journal of Hazardous Materials, 2020, 389, 121891.
doi: 10.1016/j.jhazmat.2019.121891
|
21 |
Johnson A C , Belfroid A , Di Corcia A . Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent[J]. Science of the Total Environment, 2000, 256 (2): 163- 173.
URL
|
22 |
Fawell J K , Sheahan D A , James H A , et al. Oestrogens and oestrogenic activity in raw and treated water in Severn Trent Water[J]. Water Research, 2001, 35 (5): 1240- 1244.
doi: 10.1016/S0043-1354(00)00367-5
|
23 |
Petrovic M , Sole M , De Alda M J L , et al. Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: Integration of chemical analysis and biological effects on feral carp[J]. Environmental Toxicology and Chemistry, 2002, 21 (10): 2146- 2156.
doi: 10.1002/etc.5620211018
|
24 |
Cargouet M , Perdiz D , Mouatassimsouali A , et al. Assessment of river contamination by estrogenic compounds in Paris area(France)[J]. Science of the Total Environment, 2004, 324 (1): 55- 66.
URL
|
25 |
Ekpeghere K I , Sim W J , Lee H J , et al. Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment[J]. Science of the Total Environment, 2018, 640/641, 1015- 1023.
doi: 10.1016/j.scitotenv.2018.05.218
|
26 |
Manickum T , John W . Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg(South Africa)[J]. Science of the Total Environment, 2014, 468/469, 584- 597.
doi: 10.1016/j.scitotenv.2013.08.041
|
27 |
Zhou Haidong , Huang Xia , Wang Xiaolin , et al. Behaviour of selected endocrine-disrupting chemicals in three sewage treatment plants of Beijing, China[J]. Environmental Monitoring Assessment, 2010, 161 (1): 107- 121.
URL
|
28 |
He Yujie , Chen Wei , Zheng Xiaoying , et al. Fate and removal of typical pharmaceuticals and personal care products by three different treatment processes[J]. Science of the Total Environment, 2013, 447, 248- 254.
doi: 10.1016/j.scitotenv.2013.01.009
|
29 |
Sun Jie , Wang Jing , Zhang Rui , et al. Comparison of different advanced treatment processes in removing endocrine disruption effects from municipal wastewater secondary effluent[J]. Chemosphere, 2017, 168, 1- 9.
doi: 10.1016/j.chemosphere.2016.10.031
|
30 |
Wu Qian , Lam J C W , Kwok K Y , et al. Occurrence and fate of endogenous steroid hormones, alkylphenol ethoxylates, bisphenol A and phthalates in municipal sewage treatment systems[J]. Journal of Environmental Sciences-China, 2017, 61, 49- 58.
doi: 10.1016/j.jes.2017.02.021
|
31 |
Crisp T M , Clegg E D , Cooper R L , et al. Environmental endocrine disruption: An effects assessment and analysis[J]. Environmental Health Perspectives, 1998, 106 (S1): 11- 56.
URL
|
32 |
Spindola Vilela C L , Bassin J P , Peixoto R S . Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection[J]. Environmental Pollution, 2018, 235, 546- 559.
doi: 10.1016/j.envpol.2017.12.098
|
33 |
Qin Chao , Shang Chao , Xia Kang . Removal of 17beta-estradiol from secondary wastewater treatment plant effluent using Fe(3+)-Saturated montmorillonite[J]. Chemosphere, 2019, 224, 480- 486.
doi: 10.1016/j.chemosphere.2019.02.150
|
34 |
Oishi K , Moriuchi A . Removal of dissolved estrogen in sewage effluents by β-cyclodextrin polymer[J]. Science of the Total Environment, 2010, 409 (1): 112- 115.
doi: 10.1016/j.scitotenv.2010.09.031
|
35 |
Ahmed M B , Zhou J L , Ngo H H , et al. Sorptive removal of phenolic endocrine disruptors by functionalized biochar: Competitive interaction mechanism, removal efficacy and application in wastewater[J]. Chemical Engineering Journal, 2018, 335, 801- 811.
doi: 10.1016/j.cej.2017.11.041
|
36 |
Wang Liang , Liu Lu , Zhang Zhaohui , et al. 17α-Ethinylestradiol removal from water by magnetic ion exchange resin[J]. Chinese Journal of Chemical Engineering, 2018, 26 (4): 864- 869.
doi: 10.1016/j.cjche.2017.08.006
|
37 |
Yoon Y , Westerhoff P , Snyder S A , et al. Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes[J]. Desalination, 2007, 202 (1/2/3): 16- 23.
URL
|
38 |
Xu Rui , Qin Wei , Zhang Bing , et al. Nanofiltration in pilot scale for wastewater reclamation: Long-term performance and membrane biofouling characteristics[J]. Chemical Engineering Journal, 2020, 395, 125087.
doi: 10.1016/j.cej.2020.125087
|
39 |
Cunha G D S , Souza-Chaves B M , Bila D M , et al. Insights into estrogenic activity removal using carbon nanotube electrochemical filter[J]. Science of the Total Environment, 2019, 678, 448- 456.
doi: 10.1016/j.scitotenv.2019.04.342
|
40 |
Ternes T A , Stuber J , Herrmann N , et al. Ozonation: A tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater?[J]. Water Research, 2003, 37 (8): 1976- 1982.
doi: 10.1016/S0043-1354(02)00570-5
|
41 |
Nakagawa S , Kenmochi Y , Tutumi K , et al. A Study on the degradation of endocrine disruptors and dioxins by ozonation and advanced oxidation processes[J]. Journal of Chemical Engineering of Japan, 2002, 35 (9): 840- 847.
doi: 10.1252/jcej.35.840
|
42 |
Hu Jianying , Cheng Shuijie , Aizawa T , et al. Products of aqueous chlorination of 17β-estradiol and their estrogenic activities[J]. Environmental Science & Technology, 2003, 37 (24): 5665- 5670.
URL
|
43 |
Lee B , Kamata M , Akatsuka Y , et al. Effects of chlorine on the decrease of estrogenic chemicals[J]. Water Research, 2004, 38 (3): 733- 739.
doi: 10.1016/j.watres.2003.10.010
|
44 |
Moriyama K , Matsufuji H , Chino M , et al. Identification and behavior of reaction products formed by chlorination of ethynylestradiol[J]. Chemosphere, 2004, 55 (6): 839- 847.
doi: 10.1016/j.chemosphere.2003.11.045
|
45 |
Neval B , Li P G . Nanostructured catalysts for photo-oxidation of endocrine disrupting chemicals[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 274- 281.
doi: 10.1016/j.jphotochem.2018.05.010
|
46 |
Wang Zijian , Sun Peizhe , Li Yaxiu , et al. Reactive nitrogen species mediated degradation of estrogenic disrupting chemicals by biochar/monochloramine in buffered water and synthetic hydrolyzed urine[J]. Environmental Science & Technology, 2019, 53 (21): 12688- 12696.
URL
|
47 |
Zhang Peng , Tan Xiaofei , Liu Shaobo , et al. Catalytic degradation of estrogen by persulfate activated with iron-doped graphitic biochar: Process variables effects and matrix effects[J]. Chemical Engineering Journal, 2019, 378, 122- 141.
|
48 |
Angkaew A , Sakulthaew C , Satapanajaru T , et al. UV-activated persulfate oxidation of 17β-estradiol: Implications for discharge water remediation[J]. Journal of Environmental Chemical Engineering, 2019, 7 (2): 102858.
URL
|
49 |
Cedat B , De Brauer C , Metivier H , et al. Are UV photolysis and UV/ H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale[J]. Water Research, 2016, 100, 357- 366.
doi: 10.1016/j.watres.2016.05.040
|
50 |
Huang Ying , Kong Minghao , Coffin S , et al. Degradation of contaminants of emerging concern by UV/H2O2 for water reuse: Kinetics, mechanisms, and cytotoxicity analysis[J]. Water Research, 2020, 174, 115587.
doi: 10.1016/j.watres.2020.115587
|
51 |
Kumar A K , Mohan S V . Endocrine disruptive synthetic estrogen (17α-ethynylestradiol) removal from aqueous phase through batch and column sorption studies: Mechanistic and kinetic analysis[J]. Desalination, 2011, 276 (1): 66- 74.
|
52 |
Kumar A K , Mohan S V , Sarma P N . Sorptive removal of endocrinedisruptive compound(estriol, E3) from aqueous phase by batch and column studies: Kinetic and mechanistic evaluation[J]. Journal of Hazardous Materials, 2009, 164 (2): 820- 828.
|
53 |
Semiao A J C , Schafer A I . Estrogenic micropollutant adsorption dynamics onto nanofiltration membranes[J]. Journal of Membrane Science, 2011, 381 (1): 132- 141.
|
54 |
Koyuncu I , Arikan O A , Wiesner M R , et al. Removal of hormones and antibiotics by nanofiltration membranes[J]. Journal of Membrane Science, 2008, 309 (1/2): 94- 101.
URL
|