1 |
Petrovie M , Gonzalez S , Barceló D . Analysis and removal of emerging contaminants in wastewater and drinking water[J]. TrAC Trends in Analytical Chemistry, 2003, 22 (10): 685- 696.
doi: 10.1016/S0165-9936(03)01105-1
|
2 |
文湘华, 申博. 新兴污染物水环境保护标准及其实用型去除技术[J]. 环境科学学报, 2018, 38 (3): 847- 857.
URL
|
3 |
Tran N H , Reinhard M , Gin K Y . Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review[J]. Water research, 2018, 133, 182- 207.
doi: 10.1016/j.watres.2017.12.029
|
4 |
Eggen R I , Hollender J , Joss A , et al. Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants[J]. Environmental Science & Technology, 2014, 48 (14): 7683- 7689.
URL
|
5 |
Sun Qian , Lv Min , Hu Anyi , et al. Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China[J]. Journal of Hazardous Materials, 2014, 277, 69- 75.
doi: 10.1016/j.jhazmat.2013.11.056
|
6 |
Tixier C , Singer H P , Oellers S , et al. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters[J]. Environmental science & technology, 2003, 37 (6): 1061- 1068.
URL
|
7 |
Ben Weiwei , Zhu Bing , Yuan Xiangjuan , et al. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes[J]. Water Research, 2018, 130, 38- 46.
doi: 10.1016/j.watres.2017.11.057
|
8 |
Behera S K , Kim H W , Oh J , et al. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea[J]. Science of The Total Environment, 2011, 409 (20): 4351- 4360.
doi: 10.1016/j.scitotenv.2011.07.015
|
9 |
Anliker S , Loos M , Comte R , et al. Assessing emissions from pharmaceutical manufacturing based on temporal high-resolution mass spectrometry data[J]. Environmental Science & Technology, 2020, 54 (7): 4110- 4120.
URL
|
10 |
Hernando M D , Mezcua M , Fernández-Alba A R , et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69 (2): 334- 342.
doi: 10.1016/j.talanta.2005.09.037
|
11 |
Tanoue R , Nomiyama K , Nakamura H , et al. Uptake and tissue distribution of pharmaceuticals and personal care products in wild fish from treated-wastewater-impacted streams[J]. Environmental Science & Technology, 2015, 49 (19): 11649- 11658.
URL
|
12 |
Fu Qiuguo , Malchi T , Carter L J , et al. Pharmaceutical and personal care products: From wastewater treatment into Agro-Food systems[J]. Environmental Science & Technology, 2019, 53 (24): 14083- 14090.
URL
|
13 |
Loraine G A , Pettigrove M E . Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in Southern California[J]. Environmental Science & Technology, 2006, 40 (3): 687- 695.
URL
|
14 |
Bu Qingwei , Wang Bin , Huang Jun , et al. Pharmaceuticals and personal care products in the aquatic environment in China: A review[J]. Journal of Hazardous Materials, 2013, 262, 189- 211.
doi: 10.1016/j.jhazmat.2013.08.040
|
15 |
Chen Shu , Jiao Xingchun , Gai Nan , et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China[J]. Environmental Pollution, 2016, 211, 124- 131.
doi: 10.1016/j.envpol.2015.12.024
|
16 |
Shi Yali , Gao Lihong , Li Wenhui , et al. Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China[J]. Environmental Pollution, 2016, 209, 1- 10.
doi: 10.1016/j.envpol.2015.11.008
|
17 |
Li Zhen , Xiang Xi , Li Miao , et al. Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China[J]. Ecotoxicology and Environmental Safety, 2015, 119, 74- 80.
doi: 10.1016/j.ecoenv.2015.04.031
|
18 |
Deblonde T , Hartemann P . Environmental impact of medical prescriptions: Assessing the risks and hazards of persistence, bioaccumulation and toxicity of pharmaceuticals[J]. Public Health, 2013, 127 (4): 312- 317.
doi: 10.1016/j.puhe.2013.01.026
|
19 |
Díaz-Garduno B , Pintado-Herrera M G , Biel-Maeso M , et al. Environmental risk assessment of effluents as a whole emerging contaminant: Efficiency of alternative tertiary treatments for wastewater depuration[J]. Water Research, 2017, 119, 136- 149.
doi: 10.1016/j.watres.2017.04.021
|
20 |
Vermeulen R , Schymanski E L , Barabási A , et al. The exposome and health: Where chemistry meets biology[J]. Science, 2020, 367 (6476): 392- 396.
doi: 10.1126/science.aay3164
|
21 |
Daughton C G , Ternes T A . Pharmaceuticals and personal care products in the environment: Agents of subtle change?[J]. Environmental Health Perspectives, 1999, 107 (S6): 907- 938.
URL
|
22 |
Zhang Kun , Zhao Yanbin , Fent K . Occurrence and ecotoxicological effects of free, conjugated, and halogenated steroids including 17α-hydroxypregnanolone and pregnanediol in swiss wastewater and surface water[J]. Environmental Science & Technology, 2017, 51 (11): 6498- 6506.
URL
|
23 |
Krauss M , Singer H , Hollender J . LC-high resolution MS in environmental analysis: From target screening to the identification of unknowns[J]. Analytical and Bioanalytical Chemistry, 2010, 397 (3): 943- 951.
doi: 10.1007/s00216-010-3608-9
|
24 |
Hollender J , Schymanski E L , Singer H P , et al. Nontarget screening with high resolution mass spectrometry in the environment: Ready to go?[J]. Environmental Science & Technology, 2017, 51 (20): 11505- 11512.
URL
|
25 |
Ibánez M , Sancho J V , Hernández F , et al. Rapid non-target screening of organic pollutants in water by ultraperformance liquid chromatography coupled to time-of-light mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2008, 27 (5): 481- 489.
doi: 10.1016/j.trac.2008.03.007
|
26 |
Sauvé S , Desrosiers M . A review of what is an emerging contaminant[J]. Chemistry Central Journal, 2014, 8 (1): 1- 7.
doi: 10.1186/1752-153X-8-1
|
27 |
Gosetti F , Mazzucco E , Gennaro M C , et al. Contaminants in water: Non-target UHPLC/MS analysis[J]. Environmental Chemistry Letters, 2016, 14 (1): 51- 65.
doi: 10.1007/s10311-015-0527-1
|
28 |
Pérez-Parada A , Gómez-Ramos M D M , Martínez Bueno M J , et al. Analytical improvements of hybrid LC-MS/MS techniques for the efficient evaluation of emerging contaminants in river waters: a case study of the Henares River (Madrid, Spain)[J]. Environmental Science and Pollution Research, 2012, 19 (2): 467- 481.
doi: 10.1007/s11356-011-0585-2
|
29 |
Hernández F , Portolés T , Pitarch E , et al. Gas chromatography coupled to high-resolution time-of-flight mass spectrometry to analyze trace-level organic compounds in the environment, food safety and toxicology[J]. TrAC Trends in Analytical Chemistry, 2011, 30 (2): 388- 400.
doi: 10.1016/j.trac.2010.11.007
|
30 |
Serrano R , Nácher-Mestre J , Portolés T , et al. Non-target screening of organic contaminants in marine salts by gas chromatography coupled to high-resolution time-of-flight mass spectrometry[J]. Talanta, 2011, 85 (2): 877- 884.
doi: 10.1016/j.talanta.2011.04.055
|
31 |
Valsecchi S , Polesello S , Mazzoni M , et al. On-line sample extraction and purification for the LC-MS determination of emerging contaminants in environmental samples[J]. Trends in Environmental Analytical Chemistry, 2015, 8, 27- 37.
doi: 10.1016/j.teac.2015.08.001
|
32 |
Spongberg A L , Witter J D , Acuna J , et al. Reconnaissance of selected PPCP compounds in Costa Rican surface waters[J]. Water Research, 2011, 45 (20): 6709- 6717.
doi: 10.1016/j.watres.2011.10.004
|
33 |
Kock-Schulmeyer M , Villagrasa M , López De Alda M , et al. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact[J]. Science of The Total Environment, 2013, 458/459/460, 466- 476.
URL
|
34 |
Kim U , Oh J K , Kannan K . Occurrence, removal, and environmental emission of organophosphate flame retardants/plasticizers in a wastewater treatment plant in New York State[J]. Environmental Science & Technology, 2017, 51 (14): 7872- 7880.
|
35 |
Edwards Q A , Sultana T , Kulikov S M , et al. Micropollutants related to human activity in groundwater resources in Barbados, West Indies[J]. Science of The Total Environment, 2019, 671, 76- 82.
doi: 10.1016/j.scitotenv.2019.03.314
|
36 |
Backe W J , Ort C , Brewer A J , et al. Analysis of androgenic steroids in environmental waters by large-volume injection liquid chromatography tandem mass spectrometry[J]. Analytical Chemistry, 2011, 83 (7): 2622- 2630.
doi: 10.1021/ac103013h
|
37 |
李存法, 何金环. 固相萃取技术及其应用[J]. 天中学刊, 2005, 22 (5): 13- 16.
doi: 10.3969/j.issn.1006-5261.2005.05.006
|
38 |
Schultz M M , Barofsky D F , Field J A . Quantitative determination of fluorinated alkyl substances by large-volume-injection liquid chromatography tandem mass spectrometry characterization of municipal wastewaters[J]. Environmental Science & Technology, 2006, 40 (1): 289- 295.
|
39 |
Chiaia A C , Banta-Green C , Field J . Eliminating solid phase extraction with large-volume injection LC/MS/MS: Analysis of illicit and legal drugs and human urine indicators in US wastewaters[J]. Environmental Science & Technology, 2008, 42 (23): 8841- 8848.
URL
|
40 |
Chee K K , Wong M K , Lee H K . Optimization by orthogonal array design of solid phase extraction of organochlorine pesticides from water[J]. Chromatographia, 1995, 41 (3): 191- 196.
|
41 |
Rodriguez-Mozaz S , Lopez De Alda M J , Barceló D . Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography-mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water[J]. Journal of Chromatography A, 2007, 1152 (1): 97- 115.
URL
|
42 |
Pozo O J , Guerrero C , Sancho J V , et al. Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid chromatography/tandem mass spectrometry[J]. Journal of Chromatography A, 2006, 1103 (1): 83- 93.
doi: 10.1016/j.chroma.2005.10.073
|
43 |
Enevoldsen R , Juhler R K . Perfluorinated compounds(PFCs) in groundwater and aqueous soil extracts: Using inline SPE-LC-MS/ MS for screening and sorption characterisation of perfluorooctane sulphonate and related compounds[J]. Analytical and Bioanalytical Chemistry, 2010, 398 (3): 1161- 1172.
doi: 10.1007/s00216-010-4066-0
|
44 |
Viglino L , Aboulfadl K , Prévost M , et al. Analysis of natural and synthetic estrogenic endocrine disruptors in environmental waters using online preconcentration coupled with LC-APPI-MS/MS[J]. Talanta, 2008, 76 (5): 1088- 1096.
doi: 10.1016/j.talanta.2008.05.008
|
45 |
Tobiszewski M , Namiesnik J . Direct chromatographic methods in the context of green analytical chemistry[J]. TrAC Trends in Analytical Chemistry, 2012, 35, 67- 73.
doi: 10.1016/j.trac.2012.02.006
|
46 |
Campos-Manas M C , Plaza-Bolanos P , Sánchez-Pérez J A , et al. Fast determination of pesticides and other contaminants of emerging concern in treated wastewater using direct injection coupled to high -lysensitive ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2017, 1507, 84- 94.
doi: 10.1016/j.chroma.2017.05.053
|
47 |
Hauser B , Schellin M , Popp P . Membrane-assisted solvent extraction of triazines, organochlorine, and organophosphorus compounds in complex samples combined with large-volume injection-gas chromatography/mass spectrometric detection[J]. Analytical Chemistry, 2004, 76 (20): 6029- 6038.
doi: 10.1021/ac0492923
|
48 |
Reemtsma T , Alder L , Banasiak U . A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2013, 1271 (1): 95- 104.
doi: 10.1016/j.chroma.2012.11.023
|
49 |
Busetti F , Backe W J , Bendixen N , et al. Trace analysis of environmental matrices by large-volume injection and liquid chromatography-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2012, 402 (1): 175- 186.
doi: 10.1007/s00216-011-5290-y
|
50 |
Backe W J , Field J A . Is SPE necessary for environmental analysis? A quantitative comparison of matrix effects from large-volume injection and solid-phase extraction based methods[J]. Environmental Science & Technology, 2012, 46 (12): 6750- 6758.
|
51 |
Bisceglia K J , Roberts A L , Schantz M M , et al. Quantification of drugs of abuse in municipal wastewater via SPE and direct injection liquid chromatography mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2010, 398 (6): 2701- 2712.
doi: 10.1007/s00216-010-4191-9
|
52 |
Brieudes V , Lardy-Fontan S , Lalere B , et al. Validation and uncertainties evaluation of an isotope dilution-SPE-LC-MS/MS for the quantification of drug residues in surface waters[J]. Talanta, 2016, 146, 138- 147.
doi: 10.1016/j.talanta.2015.06.073
|
53 |
Rousu T , Herttuainen J , Tolonen A . Comparison of triple quadrupole, hybrid linear ion trap triple quadrupole, time-of-flight and LTQ-Orbitrap mass spectrometers in drug discovery phase metabolite screening and identification in vitro-amitriptyline and verapamil as model compounds[J]. Rapid Communications in Mass Spectrometry, 2010, 24 (7): 939- 957.
doi: 10.1002/rcm.4465
|
54 |
Gago-Ferrero P , Schymanski E L , Bletsou A A , et al. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS[J]. Environmental Science & Technology, 2015, 49 (20): 12333- 12341.
URL
|
55 |
Qian Yuli , Wang Xuebing , Wu Gang , et al. Screening priority indicator pollutants in full-scale wastewater treatment plants by non-target analysis[J]. Journal of Hazardous Materials, 2021, 414, 125490.
doi: 10.1016/j.jhazmat.2021.125490
|
56 |
Wang Xuebing , Yu Nanyang , Yang Jingping , et al. Suspect and non-target screening of pesticides and pharmaceuticals transformation products in wastewater using QTOF-MS[J]. Environment International, 2020, 137, 105599.
doi: 10.1016/j.envint.2020.105599
|
57 |
Hernández F , Ibánez M , Botero-Coy A , et al. LC-QTOF MS screening of more than 1000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia[J]. Analytical and Bioanalytical Chemistry, 2015, 407 (21): 6405- 6416.
doi: 10.1007/s00216-015-8796-x
|
58 |
林必桂, 于云江, 向明灯, 等. 基于气相/液相色谱-高分辨率质谱联用技术的非目标化合物分析方法研究进展[J]. 环境化学, 2016, 35 (3): 466- 476.
URL
|
59 |
Hogenboom A C , van Leerdam J A , de Voogt P . Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry[J]. Journal of Chromatography A, 2009, 1216 (3): 510- 519.
doi: 10.1016/j.chroma.2008.08.053
|
60 |
Richardson S D . Water analysis: Emerging contaminants and current issues[J]. Analytical Chemistry, 2007, 79 (12): 4295- 4323.
doi: 10.1021/ac070719q
|
61 |
Bletsou A A , Jeon J , Hollender J , et al. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment[J]. TrAC Trends in Analytical Chemistry, 2015, 66, 32- 44.
doi: 10.1016/j.trac.2014.11.009
|
62 |
Yong C . Structure identifying of organic compound and organic spectroscopy[M]. Beijing: Science Press, 2000: 182- 204.
|
63 |
Fernández-Costa C , Martínez-Bartolomé S , Mcclatchy D B , et al. Impact of the identification strategy on the reproducibility of the DDA and DIA results[J]. Journal of Proteome Research, 2020, 19 (8): 3153- 3161.
doi: 10.1021/acs.jproteome.0c00153
|
64 |
Renaud J B , Sabourin L , Topp E , et al. Spectral counting approach to measure selectivity of high-resolution LC-MS methods for environmental analysis[J]. Analytical Chemistry, 2017, 89 (5): 2747- 2754.
doi: 10.1021/acs.analchem.6b03475
|
65 |
Bilbao A , Varesio E , Luban J , et al. Processing strategies and software solutions for data-independent acquisition in mass spectrometry[J]. Proteomics, 2015, 15 (5/6): 964- 980.
URL
|
66 |
Li Shanshan , Cao Qichen , Xiao Weidi , et al. Optimization of acquisition and data-processing parameters for improved proteomic quantification by sequential window acquisition of all theoretical fragment ion mass spectrometry[J]. Journal of Proteome Research, 2017, 16 (2): 738- 747.
doi: 10.1021/acs.jproteome.6b00767
|
67 |
Guo Jian , Huan Tao . Evaluation of significant features discovered from different data acquisition modes in mass spectrometry-based untargeted metabolomics[J]. Analytica Chimica Acta, 2020, 1137, 37- 46.
doi: 10.1016/j.aca.2020.08.065
|
68 |
Chen Gengbo , Walmsley S , Cheung G C M , et al. Customized consensus spectral library building for untargeted quantitative metabolomics analysis with data independent acquisition mass spectrometry and metaboDIA workflow[J]. Analytical Chemistry, 2017, 89 (9): 4897- 4906.
doi: 10.1021/acs.analchem.6b05006
|
69 |
Sun Feifei , Tan Haiguang , Li Yanshen , et al. An integrated data-dependent and data-independent acquisition method for hazardous compounds screening in foods using a single UHPLC-Q-Orbitrap run[J]. Journal of Hazardous Materials, 2021, 401, 123266.
doi: 10.1016/j.jhazmat.2020.123266
|
70 |
Knolhoff A M , Kneapler C N , Croley T R . Optimized chemical coverage and data quality for non-targeted screening applications using liquid chromatography/high-resolution mass spectrometry[J]. Analytica Chimica Acta, 2019, 1066, 93- 101.
doi: 10.1016/j.aca.2019.03.032
|
71 |
Ng B , Quinete N , Gardinali P R . Assessing accuracy, precision and selectivity using quality controls for non-targeted analysis[J]. Science of The Total Environment, 2020, 713, 136568.
doi: 10.1016/j.scitotenv.2020.136568
|
72 |
Gros M , Blum K M , Jernstedt H , et al. Screening and prioritization of micropollutants in wastewaters from on-site sewage treatment facilities[J]. Journal of Hazardous Materials, 2017, 328, 37- 45.
doi: 10.1016/j.jhazmat.2016.12.055
|
73 |
Schymanski E L , Singer H P , Longrée P , et al. Strategies to characterize polar organic contamination in wastewater: Exploring the capability of high resolution mass spectrometry[J]. Environmental Science & Technology, 2014, 48 (3): 1811- 1818.
URL
|
74 |
Alygizakis N A , Gago-Ferrero P , Hollender J , et al. Untargeted timepattern analysis of LC-HRMS data to detect spills and compounds with high fluctuation in influent wastewater[J]. Journal of Hazardous Materials, 2019, 361, 19- 29.
doi: 10.1016/j.jhazmat.2018.08.073
|
75 |
Beckers L , Brack W , Dann J P , et al. Unraveling longitudinal pollution patterns of organic micropollutants in a river by non-target screening and cluster analysis[J]. Science of The Total Environment, 2020, 727, 138388.
doi: 10.1016/j.scitotenv.2020.138388
|
76 |
Chiaia-Hernandez A C , Schymanski E L , Kumar P , et al. Suspect and non-target screening approaches to identify organic contaminant records in lake sediments[J]. Analytical and bioanalytical chemistry, 2014, 406 (28): 7323- 7335.
doi: 10.1007/s00216-014-8166-0
|
77 |
Kiefer K , Müller A , Singer H , et al. New relevant pesticide transformation products in groundwater detected using target and suspectscreening for agricultural and urban micropollutants with LCHRMS[J]. Water Research, 2019, 165, 114972.
doi: 10.1016/j.watres.2019.114972
|
78 |
Pochiraju S S , Linden K , Gu A Z , et al. Development of a separation framework for effects-based targeted and non-targeted toxicological screening of water and wastewater[J]. Water Research, 2020, 170, 115289.
doi: 10.1016/j.watres.2019.115289
|
79 |
Itzel F , Baetz N , Hohrenk L L , et al. Evaluation of a biological posttreatment after full-scale ozonation at a municipal wastewater treatment plant[J]. Water Research, 2020, 170, 115316.
doi: 10.1016/j.watres.2019.115316
|
80 |
Schollée J E , Schymanski E L , Avak S E , et al. Prioritizing unknown transformation products from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic[J]. Analytical Chemistry, 2015, 87 (24): 12121- 12129.
doi: 10.1021/acs.analchem.5b02905
|
81 |
Krauss M , Hug C , Bloch R , et al. Prioritising site-specific micropollutants in surface water from LC-HRMS non-target screening data using a rarity score[J]. Environmental Sciences Europe, 2019, 31 (1): 45.
doi: 10.1186/s12302-019-0231-z
|
82 |
Wang Yi , Yu Nanyang , Zhu Xiaobin , et al. Suspect and non-target screening of perand polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park[J]. Environmental science & technology, 2018, 52 (19): 11007- 11016.
URL
|
83 |
Ruff M , Mueller M S , Loos M , et al. Quantitative target and systematic non-target analysis of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry-Identification of unknown sources and compounds[J]. Water Research, 2015, 87, 145- 154.
|
84 |
Tousova Z , Froment J , Oswald P , et al. Identification of algal growth inhibitors in treated waste water using effect-directed analysis based on non-target screening techniques[J]. Journal of Hazardous Materials, 2018, 358, 494- 502.
doi: 10.1016/j.jhazmat.2018.05.031
|
85 |
Hashmi M A K , Escher B I , Krauss M , et al. Effect-directed analysis(EDA) of Danube River water sample receiving untreated municipal wastewater from Novi Sad, Serbia[J]. Science of The Total Environment, 2018, 624, 1072- 1081.
doi: 10.1016/j.scitotenv.2017.12.187
|
86 |
Sjerps R M A , Vughs D , van Leerdam J A , et al. Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS[J]. Water Research, 2016, 93, 254- 264.
doi: 10.1016/j.watres.2016.02.034
|
87 |
Nürenberg G , Kunkel U , Wick A , et al. Nontarget analysis: A new tool for the evaluation of wastewater processes[J]. Water Research, 2019, 163, 114842.
doi: 10.1016/j.watres.2019.07.009
|
88 |
Parry E , Young T M . Comparing targeted and non-targeted high-resolution mass spectrometric approaches for assessing advanced oxi-dation reactor performance[J]. Water Research, 2016, 104, 72- 81.
doi: 10.1016/j.watres.2016.07.056
|
89 |
Bourgin M , Beck B , Boehler M , et al. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products[J]. Water Research, 2018, 129, 486- 498.
doi: 10.1016/j.watres.2017.10.036
|
90 |
Schollée J E , Bourgin M , von Gunten U , et al. Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments[J]. Water Research, 2018, 142, 267- 278.
doi: 10.1016/j.watres.2018.05.045
|
91 |
Jaanus L , Wang Tingting , Kellogg J , et al. Quantification for non-targeted LC/MS screening without standard substances[J]. Scientific Reports, 2020, 10, 5808.
doi: 10.1038/s41598-020-62573-z
|
92 |
Hohrenk L L , Itzel F , Baetz N , et al. Comparison of software tools for liquid chromatography-high-resolution mass spectrometry data processing in non-target screening of environmental samples[J]. An-alytical Chemistry, 2020, 92 (2): 1898- 1907.
doi: 10.1021/acs.analchem.9b04095
|
93 |
Schymanski E L , Jeon J , Gulde R , et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence[J]. Environmental Science & Technology, 2014, 48 (4): 2097- 2098.
URL
|