1 |
Chhipi-Shrestha G , Rodriguez M , Sadiq R . Selection of sustainable municipal water reuse applications by multi-stakeholders using game theory[J]. Science of The Total Environment, 2019, 650, 2512- 2526.
doi: 10.1016/j.scitotenv.2018.09.359
|
2 |
Tufail A , Price W E , Mohseni M , et al. A critical review of advanced oxidation processes for emerging trace organic contaminant degradation: Mechanisms, factors, degradation products, and effluent toxicity[J]. Journal of Water Process Engineering, 2020, 40, 101778.
URL
|
3 |
Chon K , Salhi E , Von Gunten U . Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents[J]. Water Research, 2015, 81, 388- 397.
doi: 10.1016/j.watres.2015.05.039
|
4 |
Adeel M , Song Xiaoming , Wang Yuanyuan , et al. Environmental impact of estrogens on human, animal and plant life: A critical review[J]. Environment International, 2017, 99, 107- 119.
doi: 10.1016/j.envint.2016.12.010
|
5 |
Itzel F , Baetz N , Honrenk L L , et al. Evaluation of a biological posttreatment after full-scale ozonation at a municipal wastewater treatment plant[J]. Water Research, 2020, 170, 115316.
doi: 10.1016/j.watres.2019.115316
|
6 |
Tufail A , Price W E , Hai F I . A critical review on advanced oxidation processes for the removal of trace organic contaminants: A voyage from individual to integrated processes[J]. Chemosphere, 2020, 260, 127460.
doi: 10.1016/j.chemosphere.2020.127460
|
7 |
Dong Bingfeng , Kahl A , Cheng Long , et al. Fate of trace organics in a wastewater effluent dependent stream[J]. Science of The Total Environment, 2015, 518/519, 479- 490.
doi: 10.1016/j.scitotenv.2015.02.074
|
8 |
Luo Yunlong , Guo Wenshan , Ngo H H , et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Science of The Total Environment, 2014, 473/474, 619- 641.
doi: 10.1016/j.scitotenv.2013.12.065
|
9 |
Liu Ze , Chys M , Yang Yongyuan , et al. Oxidation of trace organic contaminants(TrOCs) in wastewater effluent with different ozone-based AOPs: Comparison of ozone exposure and ·OH formation[J]. Industrial & Engineering Chemistry Research, 2019, 58 (20): 8896- 8902.
|
10 |
Guillossou R , Le Roux J , Goffin A , et al. Fluorescence excitation/emission matrices as a tool to monitor the removal of organic micropollutants from wastewater effluents by adsorption onto activated carbon[J]. Water Research, 2021, 190, 116749.
doi: 10.1016/j.watres.2020.116749
|
11 |
Song Zhimin , Xu Yalan , Liang Junkun , et al. Surrogates for on-line monitoring of the attenuation of trace organic contaminants during advanced oxidation processes for water reuse[J]. Water Research, 2021, 190, 116733.
doi: 10.1016/j.watres.2020.116733
|
12 |
Miklos D B , Wang W L , Linden K G , et al. Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/Chlorine) for TOrC removal from municipal wastewater effluent and optical surrogate model evaluation[J]. Chemical Engineering Journal, 2019, 362, 537- 547.
doi: 10.1016/j.cej.2019.01.041action?journalTitle=广州中医药大学学报&year=2019&firstpage=462&issue=04
|
13 |
Park M , Anumol T , Daniels K D , et al. Predicting trace organic compound attenuation by ozone oxidation: Development of indicator and surrogate models[J]. Water Research, 2017, 119, 21- 32.
doi: 10.1016/j.watres.2017.04.024
|
14 |
Wu Ji , Cheng Shi , Cai Minhui , et al. Applying UV absorbance and fluorescence indices to estimate inactivation of bacteria and formation of bromate during ozonation of water and wastewater effluent[J]. Water Research, 2018, 145, 354- 364.
doi: 10.1016/j.watres.2018.08.030
|
15 |
Chys M , Audenaert W T M , Vangrinsven J , et al. Dynamic validation of online applied and surrogate-based models for tertiary ozonation on pilot-scale[J]. Chemosphere, 2018, 196, 494- 501.
doi: 10.1016/j.chemosphere.2017.12.168
|
16 |
Gerrity D , Trenholm R A , Snyder S A . Temporal variability of pharmaceuticals and illicit drugs in wastewater and the effects of a major sporting event[J]. Water Research, 2011, 45 (17): 5399- 5411.
doi: 10.1016/j.watres.2011.07.020
|
17 |
Drewes J E , Anderson P , Denslow N , et al. Designing monitoring programs for chemicals of emerging concern in potable reuse-what to include and what not to include?[J]. Water Science and Technology, 2013, 67 (2): 433- 439.
doi: 10.2166/wst.2012.520
|
18 |
Sgroi M , Gagliano E , Vagliasindi F G A , et al. Absorbance and EEM fluorescence of wastewater: Effects of filters, storage conditions, and chlorination[J]. Chemosphere, 2020, 243, 125292.
doi: 10.1016/j.chemosphere.2019.125292
|
19 |
Sgroi M , Anumol T , Vagliasindi F G A , et al. Comparison of the new Cl2/O3/UV process with different ozoneand UV-based AOPs for wastewater treatment at pilot scale: Removal of pharmaceuticals and changes in fluorescing organic matter[J]. Science of The Total Environment, 2020, 142720.
URL
|
20 |
Nie Jianxin , Yan Shuwen , Lian Lushi , et al. Development of fluorescence surrogates to predict the ferrate(Ⅵ) oxidation of pharmaceuticals in wastewater effluents[J]. Water Research, 2020, 185, 116256.
doi: 10.1016/j.watres.2020.116256
|
21 |
Sgroi M , Roccaro P , Korshin G V , et al. Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants[J]. Journal of Hazardous Materials, 2017, 323, 367- 376.
doi: 10.1016/j.jhazmat.2016.05.035
|
22 |
Park M , Snyder S A . Sample handling and data processing for fluorescent excitation-emission matrix(EEM) of dissolved organic matter(DOM)[J]. Chemosphere, 2018, 193, 530- 537.
doi: 10.1016/j.chemosphere.2017.11.069
|
23 |
Chen Wen , Westerhoff P , Leenheer J A , et al. Fluorescence Excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37 (24): 5701- 5710.
|
24 |
Sgroi M , Roccaro P , Korshin G V , et al. Monitoring the behavior of emerging contaminants in wastewater-impacted rivers based on the use of fluorescence excitation emission matrixes(EEM)[J]. Environmental Science & Technology, 2017, 51 (8): 4306- 4316.
URL
|
25 |
Tu Xiang , Meng Xiaoyang , Pan Yang , et al. Degradation kinetics of target compounds and correlations with spectral indices during UV/H2O2 post-treatment of biologically treated acrylonitrile wastewater[J]. Chemosphere, 2020, 243, 125384.
doi: 10.1016/j.chemosphere.2019.125384
|
26 |
Li Wentao , Majewsky M , Abbt-Braun G , et al. Application of portable online LED UV fluorescence sensor to predict the degradation of dissolved organic matter and trace organic contaminants during ozonation[J]. Water Research, 2016, 101, 262- 271.
doi: 10.1016/j.watres.2016.05.090
|
27 |
Yu H W , Anumol T , Park M , et al. On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process[J]. Water Research, 2015, 81, 250- 260.
doi: 10.1016/j.watres.2015.05.064
|
28 |
Carstea E M , Bridgeman J , Baker A , et al. Fluorescence spectroscopy for wastewater monitoring: A review[J]. Water Research, 2016, 95, 205- 219.
doi: 10.1016/j.watres.2016.03.021
|
29 |
Li Lei , Wang Yang , Zhang Wenjun , et al. New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review[J]. Chemical Engineering Journal, 2020, 381, 122676.
doi: 10.1016/j.cej.2019.122676
|
30 |
Yang Y Z , Peleato N M , Legge R L , et al. Fluorescence excitation emission matrices for rapid detection of polycyclic aromatic hydrocarbons and pesticides in surface waters[J]. Environmental Science-Water Research & Technology, 2019, 5 (2): 315- 324.
URL
|
31 |
Henderson R K , Baker A , Murphy K R , et al. Fluorescence as a potential monitoring tool for recycled water systems: A review[J]. Water Research, 2009, 43 (4): 863- 881.
doi: 10.1016/j.watres.2008.11.027
|
32 |
Zhang Shihua , Chen Zhiqiang , Wen Qinxue , et al. Assessment of maturity during co-composting of penicillin mycelial dreg via fluorescence excitation-emission matrix spectra: Characteristics of chemical and fluorescent parameters of water-extractable organic matter[J]. Chemosphere, 2016, 155, 358- 366.
doi: 10.1016/j.chemosphere.2016.04.051
|
33 |
Li Wentao , Xu Zixiao , Li Aimin , et al. HPLC/HPSEC-FLD with multi-excitation/emission scan for EEM interpretation and dissolved organic matter analysis[J]. Water Research, 2013, 47 (3): 1246- 1256.
URL
|
34 |
Yang Liyang , Han D H , Lee B M , et al. Characterizing treated wastewaters of different industries using clustered fluorescence EEMPARAFAC and FT-IR spectroscopy: Implications for downstream impact and source identification[J]. Chemosphere, 2015, 127, 222- 228.
URL
|
35 |
Bro R . PARAFAC. Tutorial and applications[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 38 (2): 149- 171.
doi: 10.1016/S0169-7439(97)00032-4
|
36 |
Stedmon C A , Bro R . Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial[J]. Limnology and Oceanography: Methods, 2008, 6 (11): 572- 579.
doi: 10.4319/lom.2008.6.572
|
37 |
Sanchez N P , Skeriotis A T , Miller C M . Assessment of dissolved organic matter fluorescence PARAFAC components before and after coagulation-filtration in a full scale water treatment plant[J]. Water Research, 2013, 47 (4): 1679- 1690.
doi: 10.1016/j.watres.2012.12.032
|
38 |
Baghoth S A , Sharma S K , Amy G L . Tracking natural organic matter(NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45 (2): 797- 809.
doi: 10.1016/j.watres.2010.09.005
|
39 |
He Wei , Hur J . Conservative behavior of fluorescence EEMPARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter[J]. Water Research, 2015, 83, 217- 226.
doi: 10.1016/j.watres.2015.06.044
|
40 |
Li Wei , Nanaboina V , Chen Fang , et al. Removal of polycyclic synthetic musks and antineoplastic drugs in ozonated wastewater: Quantitation based on the data of differential spectroscopy[J]. Journal of Hazardous Materials, 2016, 304, 242- 250.
doi: 10.1016/j.jhazmat.2015.10.035
|
41 |
Chys M , Audenaert W T M , Deniere E , et al. Surrogate-based correlation models in view of real-time control of ozonation of secondary treated municipal wastewater-model development and dynamic validation[J]. Environmental Science & Technology, 2017, 51 (24): 14233- 14243.
URL
|
42 |
Ziska A D , Park M , Anumol T , et al. Predicting trace organic compound attenuation with spectroscopic parameters in powdered activated carbon processes[J]. Chemosphere, 2016, 156, 163- 171.
doi: 10.1016/j.chemosphere.2016.04.073
|
43 |
Yan Shuwen , Yao Bo , Lian Lushi , et al. Development of fluorescence surrogates to predict the photochemical transformation of pharmaceuticals in wastewater effluents[J]. Environmental Science & Technology, 2017, 51 (5): 2738- 2747.
URL
|
44 |
Gerrity D , Gamage S , Jones D , et al. Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation[J]. Water Research, 2012, 46 (19): 6257- 6272.
doi: 10.1016/j.watres.2012.08.037
|
45 |
Hübner U , Keller S , Jekel M . Evaluation of the prediction of trace organic compound removal during ozonation of secondary effluents using tracer substances and second order rate kinetics[J]. Water Research, 2013, 47 (17): 6467- 6474.
doi: 10.1016/j.watres.2013.08.025
|
46 |
Nguyen L N, Commault A S, Sutherland D, et al. Contemporary methods for removal of nonsteroidal anti-inflammatory drugs in water reclamations[M]∥Gómez-Oliván L M. Non-steroidal anti-inflammatory drugs in water: Emerging contaminants and ecological impact. Cham: Springer International Publishing, 2020: 217-239.
|
47 |
Liu Ze , Yang Yongyuan , Shao Chenjia , et al. Ozonation of trace organic compounds in different municipal and industrial wastewaters: Kinetic-based prediction of removal efficiency and ozone dose requirements[J]. Chemical Engineering Journal, 2020, 387, 123405.
doi: 10.1016/j.cej.2019.123405
|
48 |
Lee Y , Kovalova L , Mcardell C S , et al. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent[J]. Water Research, 2014, 64, 134- 148.
doi: 10.1016/j.watres.2014.06.027
|
49 |
Lee Y , Gerrity D , Lee M , et al. Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: Use of kinetic and water specific information[J]. Environmental Science & Technology, 2013, 47 (11): 5872- 5881.
|
50 |
Anumol T , Sgroi M , Park M , et al. Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates[J]. Water Research, 2015, 76, 76- 87.
doi: 10.1016/j.watres.2015.02.019
|
51 |
Audenaert W T M , Vandierendonck D , Van Hulle S W H , et al. Comparison of ozone and HO· induced conversion of effluent organic matter(EfOM) using ozonation and UV/H2O2 treatment[J]. Water Research, 2013, 47 (7): 2387- 2398.
doi: 10.1016/j.watres.2013.02.003
|
52 |
Buffle M O , Schumacher J , Meylan S , et al. Ozonation and advanced oxidation of wastewater: Effect of O3 dose, pH, DOM and HO·-scavengers on ozone decomposition and HO· generation[J]. Ozone: Science & Engineering, 2006, 28 (4): 247- 259.
URL
|
53 |
Lee Y , Von Gunten U . Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective(chlorine, chlorine dioxide, ferrateⅥ, and ozone) and non-selective oxidants(hydroxyl radical)[J]. Water Research, 2010, 44 (2): 555- 566.
doi: 10.1016/j.watres.2009.11.045
|
54 |
Zietzschmann F , Altmann J , Ruhl A S , et al. Estimating organic micro-pollutant removal potential of activated carbons using UV absorption and carbon characteristics[J]. Water Research, 2014, 56, 48- 55.
doi: 10.1016/j.watres.2014.02.044
|
55 |
Nanaboina V , Korshin G V . Evolution of absorbance spectra of ozonated wastewater and its relationship with the degradation of tracelevel organic species[J]. Environmental Science & Technology, 2010, 44 (16): 6130- 6137.
URL
|
56 |
Li Qilin , Marinas B J , Snoeyink V L , et al. Three-component competitive adsorption model for flow-through PAC systems[J]. Environmental Science & Technology, 2003, 37 (13): 2997- 3004.
URL
|
57 |
Lee Y , Yoon J , von Gunten U . Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate〔Fe(Ⅵ)〕[J]. Environmental Science & Technology, 2005, 39 (22): 8978- 8984.
URL
|
58 |
Abdelmelek S B , Greaves J , Ishida K P , et al. Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes[J]. Environmental Science & Technology, 2011, 45 (8): 3665- 3671.
URL
|
59 |
Wang Wenlong , Chen Zhuo , Du Ye , et al. Elimination of isothiazolinone biocides in reverse osmosis concentrate by ozonation: A twophase kinetics and a non-linear surrogate model[J]. Journal of Hazardous Materials, 2020, 389, 121898.
doi: 10.1016/j.jhazmat.2019.121898
|
60 |
Sgroi M , Anumol T , Roccaro P , et al. Modeling emerging contaminants breakthrough in packed bed adsorption columns by UV absorbance and fluorescing components of dissolved organic matter[J]. Water Research, 2018, 145, 667- 677.
doi: 10.1016/j.watres.2018.09.018
|
61 |
Korshin G V , Sgroi M , Ratnaweera H . Spectroscopic surrogates for real time monitoring of water quality in wastewater treatment and water reuse[J]. Current Opinion in Environmental Science & Health, 2018, 2, 12- 19.
URL
|
62 |
Benstoem F , Nahrstedt A , Boehler M , et al. Performance of granular activated carbon to remove micropollutants from municipal wastewater-A meta-analysis of pilotand large-scale studies[J]. Chemosphere, 2017, 185, 105- 118.
doi: 10.1016/j.chemosphere.2017.06.118
|
63 |
Miklos D B , Hartl R , Michel P , et al. UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents[J]. Water Research, 2018, 136, 169- 179.
doi: 10.1016/j.watres.2018.02.044
|
64 |
Guo Kailong , Wu Zihao , Yan Shuwen , et al. Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements[J]. Water Research, 2018, 147, 184- 194.
URL
|
65 |
Bourgin M , Beck B , Boehler M , et al. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products[J]. Water Research, 2018, 129, 486- 498.
doi: 10.1016/j.watres.2017.10.036
|
66 |
Wang Jianlong , Zhuan R . Degradation of antibiotics by advanced oxidation processes: An overview[J]. Science of The Total Environment, 2020, 701, 135023.
doi: 10.1016/j.scitotenv.2019.135023
|
67 |
Wang Jianlong , Wang Shizong . Activation of persulfate(PS) and peroxymonosulfate(PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334, 1502- 1517.
doi: 10.1016/j.cej.2017.11.059
|
68 |
Miklos D B , Remy C , Jekel M , et al. Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review[J]. Water Research, 2018, 139, 118- 131.
doi: 10.1016/j.watres.2018.03.042
|
69 |
Liu Ze , Demeestere K , Van Hulle S . Pretreatment of secondary effluents in view of optimal ozone-based AOP removal of trace organic contaminants: Bench-scale comparison of efficiency and energy consumption[J]. Industrial & Engineering Chemistry Research, 2020, 559 (16): 8112- 8120.
URL
|
70 |
Zheng Ming , Daniels K D , Park M , et al. Attenuation of pharmaceutically active compounds in aqueous solution by UV/CaO2 process: Influencing factors, degradation mechanism and pathways[J]. Water Research, 2019, 164, 114922.
doi: 10.1016/j.watres.2019.114922
|
71 |
Merel S , Anumol T , Park M , et al. Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water[J]. Journal of Hazardous Materials, 2015, 282, 75- 85.
doi: 10.1016/j.jhazmat.2014.09.008
|
72 |
Varanasi L , Coscarelli E , Khaksari M , et al. Transformations of dissolved organic matter induced by UV photolysis, hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UVbased advanced oxidation processes[J]. Water Research, 2018, 135, 22- 30.
doi: 10.1016/j.watres.2018.02.015
|
73 |
Eggen R I L , Hollender J , Joss A , et al. Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants[J]. Environmental Science & Technology, 2014, 48 (14): 7683- 7689.
|
74 |
Huang Yu , Cheng Shi , Wu Yaping , et al. Developing surrogate indicators for predicting suppression of halophenols formation potential and abatement of estrogenic activity during ozonation of water and wastewater[J]. Water Research, 2019, 161, 152- 160.
doi: 10.1016/j.watres.2019.05.092
|
75 |
Liu Chen , Nanaboina V , Korshin G . Spectroscopic study of the degradation of antibiotics and the generation of representative EfOM oxidation products in ozonated wastewater[J]. Chemosphere, 2012, 86 (8): 774- 782.
doi: 10.1016/j.chemosphere.2011.11.003
|
76 |
Wang Wenlong , Wu Qianyuan , Huang Nan , et al. Potential risks from UV/H2O2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products[J]. Water Research, 2018, 141, 109- 125.
doi: 10.1016/j.watres.2018.05.005
|
77 |
Rizzo L . Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment[J]. Water Research, 2011, 45 (15): 4311- 4340.
doi: 10.1016/j.watres.2011.05.035
|
78 |
Rakic V , Rac V , Krmar M , et al. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons[J]. Journal of Hazardous Materials, 2015, 282, 141- 149.
doi: 10.1016/j.jhazmat.2014.04.062
|
79 |
Zietzschmann F , Worch E , Altmann J , et al. Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater[J]. Water Research, 2014, 65, 297- 306.
URL
|
80 |
Zhang Huiqin , Zheng Lei , Li Zhu , et al. One-step ferrate(Ⅵ) treatment as a core process for alternative drinking water treatment[J]. Chemosphere, 2020, 242, 125134.
doi: 10.1016/j.chemosphere.2019.125134
|
81 |
Anquandah G A K , Sharma V K , Knight D A , et al. Oxidation of trimethoprim by ferrate(Ⅵ): Kinetics, products, and antibacterial activity[J]. Environmental Science & Technology, 2011, 45 (24): 10575- 10581.
URL
|
82 |
Shin J, Lee Y. Elimination of organic contaminants during oxidative water treatment with ferrate(Ⅵ): Reaction kinetics and transformation products[M]∥Sharma V K, Ruey-an D, Hyunook K, et al. Ferrites and ferrates: Chemistry and applications in sustainable energy and environmental remediation. Oxford University Press, 2016: 255-273.
|
83 |
Michael I , Rizzo L , Mcardell C S , et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review[J]. Water Research, 2013, 47 (3): 957- 995.
doi: 10.1016/j.watres.2012.11.027
|
84 |
Torresi E , Fowler S J , Polesel F , et al. Biofilm thickness influences biodiversity in nitrifying MBBRs-implications on micropollutant removal[J]. Environmental Science & Technology, 2016, 50 (17): 9279- 9288.
URL
|
85 |
Jelic A, Gros M, Petrovic M, et al. Occurrence and elimination of pharmaceuticals during conventional wastewater treatment[M]∥ Guasch H, Ginebreda A, Geiszinger A. Emerging and priority pollutants in rivers: Bringing science into river management plans. Berlin-Heidelberg: Springer Berlin Heidelberg, 2012: 1-23.
|
86 |
Tixier C , Singer H P , Oellers S , et al. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters[J]. Environmental Science & Technology, 2003, 37 (6): 1061- 1068.
URL
|
87 |
Coll C , Bier R , Li Zhe , et al. Association between aquatic micropollutant dissipation and river sediment bacterial communities[J]. Environmental Science & Technology, 2020, 54 (22): 14380- 14392.
URL
|
88 |
Baena-Nogueras R M , González-Mazo E , Lara-Martín P A . Degradation kinetics of pharmaceuticals and personal care products in surface waters: Photolysis vs biodegradation[J]. Science of The Total Environment, 2017, 590/591, 643- 654.
doi: 10.1016/j.scitotenv.2017.03.015
|
89 |
Jaeger A , Posselt M , Betterle A , et al. Spatial and temporal variability in attenuation of polar organic micropollutants in an urban lowland stream[J]. Environmental Science & Technology, 2019, 53 (5): 2383- 2395.
URL
|
90 |
Kunkel U , Radke M . Reactive tracer test to evaluate the fate of pharmaceuticals in rivers[J]. Environmental Science & Technology, 2011, 45 (15): 6296- 6302.
URL
|
91 |
Li Zhe , Sobek A , Radke M . Fate of pharmaceuticals and their transformation products in four small European rivers receiving treated wastewater[J]. Environmental Science & Technology, 2016, 50 (11): 5614- 5621.
URL
|
92 |
Carlos L , Mártire D O , Gonzalez M C , et al. Photochemical fate of a mixture of emerging pollutants in the presence of humic substances[J]. Water Research, 2012, 46 (15): 4732- 4740.
doi: 10.1016/j.watres.2012.06.022
|
93 |
Bodhipaksha L C , Sharpless C M , Chin Y P , et al. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin[J]. Water Research, 2017, 110, 170- 179.
doi: 10.1016/j.watres.2016.12.016
|
94 |
Lam M W , Tantuco K , Mabury S A . PhotoFate: A new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters[J]. Environmental Science & Technology, 2003, 37 (5): 899- 907.
URL
|