| 1 | Chhipi-Shrestha G ,  Rodriguez M ,  Sadiq R .  Selection of sustainable municipal water reuse applications by multi-stakeholders using game theory[J]. Science of The Total Environment, 2019, 650, 2512- 2526. doi: 10.1016/j.scitotenv.2018.09.359
 | 
																													
																						| 2 | Tufail A ,  Price W E ,  Mohseni M , et al.  A critical review of advanced oxidation processes for emerging trace organic contaminant degradation: Mechanisms, factors, degradation products, and effluent toxicity[J]. Journal of Water Process Engineering, 2020, 40, 101778. URL
 | 
																													
																						| 3 | Chon K ,  Salhi E ,  Von Gunten U .  Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents[J]. Water Research, 2015, 81, 388- 397. doi: 10.1016/j.watres.2015.05.039
 | 
																													
																						| 4 | Adeel M ,  Song Xiaoming ,  Wang Yuanyuan , et al.  Environmental impact of estrogens on human, animal and plant life: A critical review[J]. Environment International, 2017, 99, 107- 119. doi: 10.1016/j.envint.2016.12.010
 | 
																													
																						| 5 | Itzel F ,  Baetz N ,  Honrenk L L , et al.  Evaluation of a biological posttreatment after full-scale ozonation at a municipal wastewater treatment plant[J]. Water Research, 2020, 170, 115316. doi: 10.1016/j.watres.2019.115316
 | 
																													
																						| 6 | Tufail A ,  Price W E ,  Hai F I .  A critical review on advanced oxidation processes for the removal of trace organic contaminants: A voyage from individual to integrated processes[J]. Chemosphere, 2020, 260, 127460. doi: 10.1016/j.chemosphere.2020.127460
 | 
																													
																						| 7 | Dong Bingfeng ,  Kahl A ,  Cheng Long , et al.  Fate of trace organics in a wastewater effluent dependent stream[J]. Science of The Total Environment, 2015, 518/519, 479- 490. doi: 10.1016/j.scitotenv.2015.02.074
 | 
																													
																						| 8 | Luo Yunlong ,  Guo Wenshan ,  Ngo H H , et al.  A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Science of The Total Environment, 2014, 473/474, 619- 641. doi: 10.1016/j.scitotenv.2013.12.065
 | 
																													
																						| 9 | Liu Ze ,  Chys M ,  Yang Yongyuan , et al.  Oxidation of trace organic contaminants(TrOCs) in wastewater effluent with different ozone-based AOPs: Comparison of ozone exposure and ·OH formation[J]. Industrial & Engineering Chemistry Research, 2019, 58 (20): 8896- 8902. | 
																													
																						| 10 | Guillossou R ,  Le Roux J ,  Goffin A , et al.  Fluorescence excitation/emission matrices as a tool to monitor the removal of organic micropollutants from wastewater effluents by adsorption onto activated carbon[J]. Water Research, 2021, 190, 116749. doi: 10.1016/j.watres.2020.116749
 | 
																													
																						| 11 | Song Zhimin ,  Xu Yalan ,  Liang Junkun , et al.  Surrogates for on-line monitoring of the attenuation of trace organic contaminants during advanced oxidation processes for water reuse[J]. Water Research, 2021, 190, 116733. doi: 10.1016/j.watres.2020.116733
 | 
																													
																						| 12 | Miklos D B ,  Wang W L ,  Linden K G , et al.  Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/Chlorine) for TOrC removal from municipal wastewater effluent and optical surrogate model evaluation[J]. Chemical Engineering Journal, 2019, 362, 537- 547. doi: 10.1016/j.cej.2019.01.041action?journalTitle=广州中医药大学学报&year=2019&firstpage=462&issue=04
 | 
																													
																						| 13 | Park M ,  Anumol T ,  Daniels K D , et al.  Predicting trace organic compound attenuation by ozone oxidation: Development of indicator and surrogate models[J]. Water Research, 2017, 119, 21- 32. doi: 10.1016/j.watres.2017.04.024
 | 
																													
																						| 14 | Wu Ji ,  Cheng Shi ,  Cai Minhui , et al.  Applying UV absorbance and fluorescence indices to estimate inactivation of bacteria and formation of bromate during ozonation of water and wastewater effluent[J]. Water Research, 2018, 145, 354- 364. doi: 10.1016/j.watres.2018.08.030
 | 
																													
																						| 15 | Chys M ,  Audenaert W T M ,  Vangrinsven J , et al.  Dynamic validation of online applied and surrogate-based models for tertiary ozonation on pilot-scale[J]. Chemosphere, 2018, 196, 494- 501. doi: 10.1016/j.chemosphere.2017.12.168
 | 
																													
																						| 16 | Gerrity D ,  Trenholm R A ,  Snyder S A .  Temporal variability of pharmaceuticals and illicit drugs in wastewater and the effects of a major sporting event[J]. Water Research, 2011, 45 (17): 5399- 5411. doi: 10.1016/j.watres.2011.07.020
 | 
																													
																						| 17 | Drewes J E ,  Anderson P ,  Denslow N , et al.  Designing monitoring programs for chemicals of emerging concern in potable reuse-what to include and what not to include?[J]. Water Science and Technology, 2013, 67 (2): 433- 439. doi: 10.2166/wst.2012.520
 | 
																													
																						| 18 | Sgroi M ,  Gagliano E ,  Vagliasindi F G A , et al.  Absorbance and EEM fluorescence of wastewater: Effects of filters, storage conditions, and chlorination[J]. Chemosphere, 2020, 243, 125292. doi: 10.1016/j.chemosphere.2019.125292
 | 
																													
																						| 19 | Sgroi M ,  Anumol T ,  Vagliasindi F G A , et al.  Comparison of the new Cl2/O3/UV process with different ozoneand UV-based AOPs for wastewater treatment at pilot scale: Removal of pharmaceuticals and changes in fluorescing organic matter[J]. Science of The Total Environment, 2020, 142720. URL
 | 
																													
																						| 20 | Nie Jianxin ,  Yan Shuwen ,  Lian Lushi , et al.  Development of fluorescence surrogates to predict the ferrate(Ⅵ) oxidation of pharmaceuticals in wastewater effluents[J]. Water Research, 2020, 185, 116256. doi: 10.1016/j.watres.2020.116256
 | 
																													
																						| 21 | Sgroi M ,  Roccaro P ,  Korshin G V , et al.  Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants[J]. Journal of Hazardous Materials, 2017, 323, 367- 376. doi: 10.1016/j.jhazmat.2016.05.035
 | 
																													
																						| 22 | Park M ,  Snyder S A .  Sample handling and data processing for fluorescent excitation-emission matrix(EEM) of dissolved organic matter(DOM)[J]. Chemosphere, 2018, 193, 530- 537. doi: 10.1016/j.chemosphere.2017.11.069
 | 
																													
																						| 23 | Chen Wen ,  Westerhoff P ,  Leenheer J A , et al.  Fluorescence Excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37 (24): 5701- 5710. | 
																													
																						| 24 | Sgroi M ,  Roccaro P ,  Korshin G V , et al.  Monitoring the behavior of emerging contaminants in wastewater-impacted rivers based on the use of fluorescence excitation emission matrixes(EEM)[J]. Environmental Science & Technology, 2017, 51 (8): 4306- 4316. URL
 | 
																													
																						| 25 | Tu Xiang ,  Meng Xiaoyang ,  Pan Yang , et al.  Degradation kinetics of target compounds and correlations with spectral indices during UV/H2O2 post-treatment of biologically treated acrylonitrile wastewater[J]. Chemosphere, 2020, 243, 125384. doi: 10.1016/j.chemosphere.2019.125384
 | 
																													
																						| 26 | Li Wentao ,  Majewsky M ,  Abbt-Braun G , et al.  Application of portable online LED UV fluorescence sensor to predict the degradation of dissolved organic matter and trace organic contaminants during ozonation[J]. Water Research, 2016, 101, 262- 271. doi: 10.1016/j.watres.2016.05.090
 | 
																													
																						| 27 | Yu H W ,  Anumol T ,  Park M , et al.  On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process[J]. Water Research, 2015, 81, 250- 260. doi: 10.1016/j.watres.2015.05.064
 | 
																													
																						| 28 | Carstea E M ,  Bridgeman J ,  Baker A , et al.  Fluorescence spectroscopy for wastewater monitoring: A review[J]. Water Research, 2016, 95, 205- 219. doi: 10.1016/j.watres.2016.03.021
 | 
																													
																						| 29 | Li Lei ,  Wang Yang ,  Zhang Wenjun , et al.  New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review[J]. Chemical Engineering Journal, 2020, 381, 122676. doi: 10.1016/j.cej.2019.122676
 | 
																													
																						| 30 | Yang Y Z ,  Peleato N M ,  Legge R L , et al.  Fluorescence excitation emission matrices for rapid detection of polycyclic aromatic hydrocarbons and pesticides in surface waters[J]. Environmental Science-Water Research & Technology, 2019, 5 (2): 315- 324. URL
 | 
																													
																						| 31 | Henderson R K ,  Baker A ,  Murphy K R , et al.  Fluorescence as a potential monitoring tool for recycled water systems: A review[J]. Water Research, 2009, 43 (4): 863- 881. doi: 10.1016/j.watres.2008.11.027
 | 
																													
																						| 32 | Zhang Shihua ,  Chen Zhiqiang ,  Wen Qinxue , et al.  Assessment of maturity during co-composting of penicillin mycelial dreg via fluorescence excitation-emission matrix spectra: Characteristics of chemical and fluorescent parameters of water-extractable organic matter[J]. Chemosphere, 2016, 155, 358- 366. doi: 10.1016/j.chemosphere.2016.04.051
 | 
																													
																						| 33 | Li Wentao ,  Xu Zixiao ,  Li Aimin , et al.  HPLC/HPSEC-FLD with multi-excitation/emission scan for EEM interpretation and dissolved organic matter analysis[J]. Water Research, 2013, 47 (3): 1246- 1256. URL
 | 
																													
																						| 34 | Yang Liyang ,  Han D H ,  Lee B M , et al.  Characterizing treated wastewaters of different industries using clustered fluorescence EEMPARAFAC and FT-IR spectroscopy: Implications for downstream impact and source identification[J]. Chemosphere, 2015, 127, 222- 228. URL
 | 
																													
																						| 35 | Bro R .  PARAFAC. Tutorial and applications[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 38 (2): 149- 171. doi: 10.1016/S0169-7439(97)00032-4
 | 
																													
																						| 36 | Stedmon C A ,  Bro R .  Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial[J]. Limnology and Oceanography: Methods, 2008, 6 (11): 572- 579. doi: 10.4319/lom.2008.6.572
 | 
																													
																						| 37 | Sanchez N P ,  Skeriotis A T ,  Miller C M .  Assessment of dissolved organic matter fluorescence PARAFAC components before and after coagulation-filtration in a full scale water treatment plant[J]. Water Research, 2013, 47 (4): 1679- 1690. doi: 10.1016/j.watres.2012.12.032
 | 
																													
																						| 38 | Baghoth S A ,  Sharma S K ,  Amy G L .  Tracking natural organic matter(NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45 (2): 797- 809. doi: 10.1016/j.watres.2010.09.005
 | 
																													
																						| 39 | He Wei ,  Hur J .  Conservative behavior of fluorescence EEMPARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter[J]. Water Research, 2015, 83, 217- 226. doi: 10.1016/j.watres.2015.06.044
 | 
																													
																						| 40 | Li Wei ,  Nanaboina V ,  Chen Fang , et al.  Removal of polycyclic synthetic musks and antineoplastic drugs in ozonated wastewater: Quantitation based on the data of differential spectroscopy[J]. Journal of Hazardous Materials, 2016, 304, 242- 250. doi: 10.1016/j.jhazmat.2015.10.035
 | 
																													
																						| 41 | Chys M ,  Audenaert W T M ,  Deniere E , et al.  Surrogate-based correlation models in view of real-time control of ozonation of secondary treated municipal wastewater-model development and dynamic validation[J]. Environmental Science & Technology, 2017, 51 (24): 14233- 14243. URL
 | 
																													
																						| 42 | Ziska A D ,  Park M ,  Anumol T , et al.  Predicting trace organic compound attenuation with spectroscopic parameters in powdered activated carbon processes[J]. Chemosphere, 2016, 156, 163- 171. doi: 10.1016/j.chemosphere.2016.04.073
 | 
																													
																						| 43 | Yan Shuwen ,  Yao Bo ,  Lian Lushi , et al.  Development of fluorescence surrogates to predict the photochemical transformation of pharmaceuticals in wastewater effluents[J]. Environmental Science & Technology, 2017, 51 (5): 2738- 2747. URL
 | 
																													
																						| 44 | Gerrity D ,  Gamage S ,  Jones D , et al.  Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation[J]. Water Research, 2012, 46 (19): 6257- 6272. doi: 10.1016/j.watres.2012.08.037
 | 
																													
																						| 45 | Hübner U ,  Keller S ,  Jekel M .  Evaluation of the prediction of trace organic compound removal during ozonation of secondary effluents using tracer substances and second order rate kinetics[J]. Water Research, 2013, 47 (17): 6467- 6474. doi: 10.1016/j.watres.2013.08.025
 | 
																													
																						| 46 | Nguyen L N, Commault A S, Sutherland D, et al. Contemporary methods for removal of nonsteroidal anti-inflammatory drugs in water reclamations[M]∥Gómez-Oliván L M. Non-steroidal anti-inflammatory drugs in water: Emerging contaminants and ecological impact. Cham: Springer International Publishing, 2020: 217-239. | 
																													
																						| 47 | Liu Ze ,  Yang Yongyuan ,  Shao Chenjia , et al.  Ozonation of trace organic compounds in different municipal and industrial wastewaters: Kinetic-based prediction of removal efficiency and ozone dose requirements[J]. Chemical Engineering Journal, 2020, 387, 123405. doi: 10.1016/j.cej.2019.123405
 | 
																													
																						| 48 | Lee Y ,  Kovalova L ,  Mcardell C S , et al.  Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent[J]. Water Research, 2014, 64, 134- 148. doi: 10.1016/j.watres.2014.06.027
 | 
																													
																						| 49 | Lee Y ,  Gerrity D ,  Lee M , et al.  Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: Use of kinetic and water specific information[J]. Environmental Science & Technology, 2013, 47 (11): 5872- 5881. | 
																													
																						| 50 | Anumol T ,  Sgroi M ,  Park M , et al.  Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates[J]. Water Research, 2015, 76, 76- 87. doi: 10.1016/j.watres.2015.02.019
 | 
																													
																						| 51 | Audenaert W T M ,  Vandierendonck D ,  Van Hulle S W H , et al.  Comparison of ozone and HO· induced conversion of effluent organic matter(EfOM) using ozonation and UV/H2O2 treatment[J]. Water Research, 2013, 47 (7): 2387- 2398. doi: 10.1016/j.watres.2013.02.003
 | 
																													
																						| 52 | Buffle M O ,  Schumacher J ,  Meylan S , et al.  Ozonation and advanced oxidation of wastewater: Effect of O3 dose, pH, DOM and HO·-scavengers on ozone decomposition and HO· generation[J]. Ozone: Science & Engineering, 2006, 28 (4): 247- 259. URL
 | 
																													
																						| 53 | Lee Y ,  Von Gunten U .  Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective(chlorine, chlorine dioxide, ferrateⅥ, and ozone) and non-selective oxidants(hydroxyl radical)[J]. Water Research, 2010, 44 (2): 555- 566. doi: 10.1016/j.watres.2009.11.045
 | 
																													
																						| 54 | Zietzschmann F ,  Altmann J ,  Ruhl A S , et al.  Estimating organic micro-pollutant removal potential of activated carbons using UV absorption and carbon characteristics[J]. Water Research, 2014, 56, 48- 55. doi: 10.1016/j.watres.2014.02.044
 | 
																													
																						| 55 | Nanaboina V ,  Korshin G V .  Evolution of absorbance spectra of ozonated wastewater and its relationship with the degradation of tracelevel organic species[J]. Environmental Science & Technology, 2010, 44 (16): 6130- 6137. URL
 | 
																													
																						| 56 | Li Qilin ,  Marinas B J ,  Snoeyink V L , et al.  Three-component competitive adsorption model for flow-through PAC systems[J]. Environmental Science & Technology, 2003, 37 (13): 2997- 3004. URL
 | 
																													
																						| 57 | Lee Y ,  Yoon J ,  von Gunten U .  Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate〔Fe(Ⅵ)〕[J]. Environmental Science & Technology, 2005, 39 (22): 8978- 8984. URL
 | 
																													
																						| 58 | Abdelmelek S B ,  Greaves J ,  Ishida K P , et al.  Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes[J]. Environmental Science & Technology, 2011, 45 (8): 3665- 3671. URL
 | 
																													
																						| 59 | Wang Wenlong ,  Chen Zhuo ,  Du Ye , et al.  Elimination of isothiazolinone biocides in reverse osmosis concentrate by ozonation: A twophase kinetics and a non-linear surrogate model[J]. Journal of Hazardous Materials, 2020, 389, 121898. doi: 10.1016/j.jhazmat.2019.121898
 | 
																													
																						| 60 | Sgroi M ,  Anumol T ,  Roccaro P , et al.  Modeling emerging contaminants breakthrough in packed bed adsorption columns by UV absorbance and fluorescing components of dissolved organic matter[J]. Water Research, 2018, 145, 667- 677. doi: 10.1016/j.watres.2018.09.018
 | 
																													
																						| 61 | Korshin G V ,  Sgroi M ,  Ratnaweera H .  Spectroscopic surrogates for real time monitoring of water quality in wastewater treatment and water reuse[J]. Current Opinion in Environmental Science & Health, 2018, 2, 12- 19. URL
 | 
																													
																						| 62 | Benstoem F ,  Nahrstedt A ,  Boehler M , et al.  Performance of granular activated carbon to remove micropollutants from municipal wastewater-A meta-analysis of pilotand large-scale studies[J]. Chemosphere, 2017, 185, 105- 118. doi: 10.1016/j.chemosphere.2017.06.118
 | 
																													
																						| 63 | Miklos D B ,  Hartl R ,  Michel P , et al.  UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents[J]. Water Research, 2018, 136, 169- 179. doi: 10.1016/j.watres.2018.02.044
 | 
																													
																						| 64 | Guo Kailong ,  Wu Zihao ,  Yan Shuwen , et al.  Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements[J]. Water Research, 2018, 147, 184- 194. URL
 | 
																													
																						| 65 | Bourgin M ,  Beck B ,  Boehler M , et al.  Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products[J]. Water Research, 2018, 129, 486- 498. doi: 10.1016/j.watres.2017.10.036
 | 
																													
																						| 66 | Wang Jianlong ,  Zhuan R .  Degradation of antibiotics by advanced oxidation processes: An overview[J]. Science of The Total Environment, 2020, 701, 135023. doi: 10.1016/j.scitotenv.2019.135023
 | 
																													
																						| 67 | Wang Jianlong ,  Wang Shizong .  Activation of persulfate(PS) and peroxymonosulfate(PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334, 1502- 1517. doi: 10.1016/j.cej.2017.11.059
 | 
																													
																						| 68 | Miklos D B ,  Remy C ,  Jekel M , et al.  Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review[J]. Water Research, 2018, 139, 118- 131. doi: 10.1016/j.watres.2018.03.042
 | 
																													
																						| 69 | Liu Ze ,  Demeestere K ,  Van Hulle S .  Pretreatment of secondary effluents in view of optimal ozone-based AOP removal of trace organic contaminants: Bench-scale comparison of efficiency and energy consumption[J]. Industrial & Engineering Chemistry Research, 2020, 559 (16): 8112- 8120. URL
 | 
																													
																						| 70 | Zheng Ming ,  Daniels K D ,  Park M , et al.  Attenuation of pharmaceutically active compounds in aqueous solution by UV/CaO2 process: Influencing factors, degradation mechanism and pathways[J]. Water Research, 2019, 164, 114922. doi: 10.1016/j.watres.2019.114922
 | 
																													
																						| 71 | Merel S ,  Anumol T ,  Park M , et al.  Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water[J]. Journal of Hazardous Materials, 2015, 282, 75- 85. doi: 10.1016/j.jhazmat.2014.09.008
 | 
																													
																						| 72 | Varanasi L ,  Coscarelli E ,  Khaksari M , et al.  Transformations of dissolved organic matter induced by UV photolysis, hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UVbased advanced oxidation processes[J]. Water Research, 2018, 135, 22- 30. doi: 10.1016/j.watres.2018.02.015
 | 
																													
																						| 73 | Eggen R I L ,  Hollender J ,  Joss A , et al.  Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants[J]. Environmental Science & Technology, 2014, 48 (14): 7683- 7689. | 
																													
																						| 74 | Huang Yu ,  Cheng Shi ,  Wu Yaping , et al.  Developing surrogate indicators for predicting suppression of halophenols formation potential and abatement of estrogenic activity during ozonation of water and wastewater[J]. Water Research, 2019, 161, 152- 160. doi: 10.1016/j.watres.2019.05.092
 | 
																													
																						| 75 | Liu Chen ,  Nanaboina V ,  Korshin G .  Spectroscopic study of the degradation of antibiotics and the generation of representative EfOM oxidation products in ozonated wastewater[J]. Chemosphere, 2012, 86 (8): 774- 782. doi: 10.1016/j.chemosphere.2011.11.003
 | 
																													
																						| 76 | Wang Wenlong ,  Wu Qianyuan ,  Huang Nan , et al.  Potential risks from UV/H2O2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products[J]. Water Research, 2018, 141, 109- 125. doi: 10.1016/j.watres.2018.05.005
 | 
																													
																						| 77 | Rizzo L .  Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment[J]. Water Research, 2011, 45 (15): 4311- 4340. doi: 10.1016/j.watres.2011.05.035
 | 
																													
																						| 78 | Rakic V ,  Rac V ,  Krmar M , et al.  The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons[J]. Journal of Hazardous Materials, 2015, 282, 141- 149. doi: 10.1016/j.jhazmat.2014.04.062
 | 
																													
																						| 79 | Zietzschmann F ,  Worch E ,  Altmann J , et al.  Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater[J]. Water Research, 2014, 65, 297- 306. URL
 | 
																													
																						| 80 | Zhang Huiqin ,  Zheng Lei ,  Li Zhu , et al.  One-step ferrate(Ⅵ) treatment as a core process for alternative drinking water treatment[J]. Chemosphere, 2020, 242, 125134. doi: 10.1016/j.chemosphere.2019.125134
 | 
																													
																						| 81 | Anquandah G A K ,  Sharma V K ,  Knight D A , et al.  Oxidation of trimethoprim by ferrate(Ⅵ): Kinetics, products, and antibacterial activity[J]. Environmental Science & Technology, 2011, 45 (24): 10575- 10581. URL
 | 
																													
																						| 82 | Shin J, Lee Y. Elimination of organic contaminants during oxidative water treatment with ferrate(Ⅵ): Reaction kinetics and transformation products[M]∥Sharma V K, Ruey-an D, Hyunook K, et al. Ferrites and ferrates: Chemistry and applications in sustainable energy and environmental remediation. Oxford University Press, 2016: 255-273. | 
																													
																						| 83 | Michael I ,  Rizzo L ,  Mcardell C S , et al.  Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review[J]. Water Research, 2013, 47 (3): 957- 995. doi: 10.1016/j.watres.2012.11.027
 | 
																													
																						| 84 | Torresi E ,  Fowler S J ,  Polesel F , et al.  Biofilm thickness influences biodiversity in nitrifying MBBRs-implications on micropollutant removal[J]. Environmental Science & Technology, 2016, 50 (17): 9279- 9288. URL
 | 
																													
																						| 85 | Jelic A, Gros M, Petrovic M, et al. Occurrence and elimination of pharmaceuticals during conventional wastewater treatment[M]∥ Guasch H, Ginebreda A, Geiszinger A. Emerging and priority pollutants in rivers: Bringing science into river management plans. Berlin-Heidelberg: Springer Berlin Heidelberg, 2012: 1-23. | 
																													
																						| 86 | Tixier C ,  Singer H P ,  Oellers S , et al.  Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters[J]. Environmental Science & Technology, 2003, 37 (6): 1061- 1068. URL
 | 
																													
																						| 87 | Coll C ,  Bier R ,  Li Zhe , et al.  Association between aquatic micropollutant dissipation and river sediment bacterial communities[J]. Environmental Science & Technology, 2020, 54 (22): 14380- 14392. URL
 | 
																													
																						| 88 | Baena-Nogueras R M ,  González-Mazo E ,  Lara-Martín P A .  Degradation kinetics of pharmaceuticals and personal care products in surface waters: Photolysis vs biodegradation[J]. Science of The Total Environment, 2017, 590/591, 643- 654. doi: 10.1016/j.scitotenv.2017.03.015
 | 
																													
																						| 89 | Jaeger A ,  Posselt M ,  Betterle A , et al.  Spatial and temporal variability in attenuation of polar organic micropollutants in an urban lowland stream[J]. Environmental Science & Technology, 2019, 53 (5): 2383- 2395. URL
 | 
																													
																						| 90 | Kunkel U ,  Radke M .  Reactive tracer test to evaluate the fate of pharmaceuticals in rivers[J]. Environmental Science & Technology, 2011, 45 (15): 6296- 6302. URL
 | 
																													
																						| 91 | Li Zhe ,  Sobek A ,  Radke M .  Fate of pharmaceuticals and their transformation products in four small European rivers receiving treated wastewater[J]. Environmental Science & Technology, 2016, 50 (11): 5614- 5621. URL
 | 
																													
																						| 92 | Carlos L ,  Mártire D O ,  Gonzalez M C , et al.  Photochemical fate of a mixture of emerging pollutants in the presence of humic substances[J]. Water Research, 2012, 46 (15): 4732- 4740. doi: 10.1016/j.watres.2012.06.022
 | 
																													
																						| 93 | Bodhipaksha L C ,  Sharpless C M ,  Chin Y P , et al.  Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin[J]. Water Research, 2017, 110, 170- 179. doi: 10.1016/j.watres.2016.12.016
 | 
																													
																						| 94 | Lam M W ,  Tantuco K ,  Mabury S A .  PhotoFate: A new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters[J]. Environmental Science & Technology, 2003, 37 (5): 899- 907. URL
 |