1 |
Balapure K , Jain K , Bhatt N , et al. Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process[J]. International Biodeterioration & Biodegradation, 2016, 106, 97- 105.
URL
|
2 |
Bilinska L , Gmurek M , Ledakowicz S . Comparison between industrial and simulated textile wastewater treatment by AOPs-Biodegradability, toxicity and cost assessment[J]. Chemical Engineering Journal, 2016, 306, 550- 559.
doi: 10.1016/j.cej.2016.07.100
|
3 |
Liang Jieying , Ning Xunan , Sun Jian , et al. Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand[J]. Ecotoxicology and Environmental Safety, 2018, 166, 56- 62.
doi: 10.1016/j.ecoenv.2018.08.106
|
4 |
Ledakowicz S , Zylla R , Pazdzior K , et al. Integration of ozonation and biological treatment of industrial wastewater from dyehouse[J]. Ozone-Science & Engineering, 2017, 39 (5): 357- 365.
URL
|
5 |
Punzi M , Anbalagan A , Borner R A , et al. Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: Evaluation of toxicity and microbial community structure[J]. Chemical Engineering Journal, 2015, 270, 290- 299.
doi: 10.1016/j.cej.2015.02.042
|
6 |
Valitalo P , Massei R , Heiskanen I , et al. Effect-based assessment of toxicity removal during wastewater treatment[J]. Water Research, 2017, 126, 153- 163.
doi: 10.1016/j.watres.2017.09.014
|
7 |
Norberg-King T J , Embry M R , Belanger S E , et al. An international perspective on the tools and concepts for effluent toxicity assessments in the context of animal alternatives: Reduction in vertebrate use[J]. Environnental Toxicology and Chemistry, 2018, 37 (11): 2745- 2757.
doi: 10.1002/etc.4259
|
8 |
Sponza D T . Necessity of toxicity assessment in Turkish industrial discharges(Examples from metal and textile industry effluents)[J]. Environmental Monitoring and Assessment, 2002, 73 (1): 41- 66.
doi: 10.1023/A:1012663213153
|
9 |
Akhtar M F , Ashraf M , Javeed A , et al. Toxicity appraisal of untreated dyeing industry wastewater based on chemical characterization and short term bioassays[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96 (4): 502- 507.
doi: 10.1007/s00128-016-1759-x
|
10 |
Villegas-Navarro A , Ramirez Y , Salvador M S , et al. Determination of wastewater LC50 of the different process stages of the textile industry[J]. Ecotoxicology and Environmental Safety, 2001, 48 (1): 56- 61.
doi: 10.1006/eesa.2000.1986
|
11 |
Zhang Wenjuan , Liu Wei , Zhang Jing , et al. Characterisation of acute toxicity, genotoxicity and oxidative stress posed by textile effluent on zebrafish[J]. Journal of Environmental Sciences, 2012, 24 (11): 2019- 2027.
doi: 10.1016/S1001-0742(11)61030-9
|
12 |
张文娟. 印染废水与辽河典型区域河水的毒性特征研究[D]. 大连: 大连理工大学, 2012.
|
13 |
He Xiwei , Qi Zhaodong , Gao Jie , et al. Nonylphenol ethoxylates biodegradation increases estrogenicity of textile wastewater in biological treatment systems[J]. Water Research, 2020, 184, 116137.
doi: 10.1016/j.watres.2020.116137
|
14 |
Tara N , Iqbal M , Khan Q M , et al. Bioaugmentation of floating treatment wetlands for the remediation of textile effluent[J]. Water Environment Journal, 2019, 33 (1): 124- 134.
doi: 10.1111/wej.12383
|
15 |
Manenti D R , Modenes A N , Soares P A , et al. Biodegradability and toxicity assessment of a real textile wastewater effluent treated by an optimized electrocoagulation process[J]. Environmental Technology, 2015, 36 (4): 496- 506.
doi: 10.1080/09593330.2014.952676
|
16 |
Dhaouefi Z , Toledo-Cervantes A , Ghedira K , et al. Decolorization and phytotoxicity reduction in an innovative anaerobic/aerobic photobioreactor treating textile wastewater[J]. Chemosphere, 2019, 234, 356- 364.
doi: 10.1016/j.chemosphere.2019.06.106
|
17 |
Tkaczyk A , Mitrowska K , Posyniak A . Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review[J]. Science of the Total Environment, 2020, 717, 19.
URL
|
18 |
Mahne D , Stangar U L , Trebse P , et al. TiO2-based photocatalytic treatment of raw and constructed-wetland pretreated textile wastewater[J]. International Journal of Photoenergy, 2012, (8): 483- 490.
URL
|
19 |
Hayat H , Mahmood Q , Pervez A , et al. Comparative decolorization of dyes in textile wastewater using biological and chemical treatment[J]. Separation and Purification Technology, 2015, 154, 149- 153.
doi: 10.1016/j.seppur.2015.09.025
|
20 |
Croce R , Cina F , Lombardo A , et al. Aquatic toxicity of several textile dye formulations: Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata[J]. Ecotoxicology and Environmental Safety, 2017, 144, 79- 87.
doi: 10.1016/j.ecoenv.2017.05.046
|
21 |
Holkar C R , Jadhav A J , Pinjari D V , et al. A critical review on textile wastewater treatments: Possible approaches[J]. Journal of Environmental Management, 2016, 182, 351- 366.
URL
|
22 |
李珍珍, 罗建中, 马莉娜, 等. 工业园印染污水中重金属识别与集中处理技术研究[J]. 工业水处理, 2013, (2): 9- 12.
doi: 10.3969/j.issn.1005-829X.2013.02.003
|
23 |
赵霞, 罗培松, 相巧明. 绍兴市典型印染废水中重金属锑排放现状及排放源调查[J]. 中国环境监测, 2016, (4): 91- 97.
URL
|
24 |
Sreedharan V , Krithishna K V , Nidheesh P V . Removal of chromium and iron from real textile wastewater by sorption on soils[J]. Journal of Hazardous Toxic and Radioactive Waste, 2017, 21 (4): 6017002.
doi: 10.1061/(ASCE)HZ.2153-5515.0000368
|
25 |
Ghorbani M , Eisazadeh H . Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash[J]. Composites Part B-Engineering, 2013, 45 (1): 1- 7.
doi: 10.1016/j.compositesb.2012.09.035
|
26 |
Mubashar M , Naveed M , Mustafa A , et al. Experimental investigation of Chlorella vulgaris and Enterobacter sp. MN17 for decolorization and removal of heavy metals from textile wastewater[J]. Water, 2020, 12 (11): 2- 5.
URL
|
27 |
Abu-Ghunmi L N , Jamrah A I . Biological treatment of textile wastewater using sequencing batch reactor technology[J]. Environmental Modeling & Assessment, 2006, 11 (4): 333- 343.
doi: 10.1007/s10666-005-9025-3
|
28 |
Prabha S , Ramanathan A L , Gogoi A , et al. Suitability of conventional and membrane bioreactor system in textile mill effluent treatment[J]. Desalination and Water Treatment, 2015, 56 (1): 14- 23.
doi: 10.1080/19443994.2014.932716
|
29 |
Wells M J M , Rossano A J , Roberts E C . Textile waste-water effluent toxicity identification evaluation[J]. Archives of Environmental Contamination and Toxicology, 1994, 27 (4): 555- 560.
doi: 10.1007/BF00214849
|
30 |
Velusamy S , Roy A , Sundaram S , et al. A Review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment[J]. Chemical Record, 2021, 41, 1- 42.
|
31 |
杨永利. 浅谈纺织印染助剂中的非离子表面活性剂的生产工艺[J]. 中国科技博览, 2016, (2): 73- 73.
URL
|
32 |
徐世美, 张淑芬, 杨锦宗. 表面活性剂在纺织染整中的应用[J]. 日用化学品科学, 2002, (6): 18- 23.
doi: 10.3969/j.issn.1006-7264.2002.06.006
|
33 |
Acir I H , Guenther K . Endocrine. disrupting metabolites of alkylphenol ethoxylates-A critical review of analytical methods, environmental occurrences, toxicity, and regulation[J]. Science of the Total Environment, 2018, 635, 1530- 1546.
doi: 10.1016/j.scitotenv.2018.04.079
|
34 |
Susana G , Mira P , Maja R , et al. Characterization and quantitative analysis of surfactants in textile wastewater by liquid chromatography/quadrupole-time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry Rcm, 2010, 22 (10): 1445- 1454.
URL
|
35 |
Sheahan D A , Brighty G C , Daniel M , et al. Reduction in the estrogenic activity of a treated sewage effluent discharge to an English river as a result of a decrease in the concentration of industrially derived surfactants[J]. Environmental Toxicology & Chemistry, 2010, 21 (3): 515- 519.
|
36 |
Alessando C , Andrea Filippo M , Sabrina S , et al. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review[J]. Environmental Science & Pollution Research, 2015, 22 (8): 5711- 5741.
URL
|
37 |
Boonnorat J , Kanyatrakul A , Prakhongsak A , et al. Effect of hydraulic retention time on micropollutant biodegradation in activated sludge system augmented with acclimatized sludge treating low-micropollutants wastewater[J]. Chemosphere, 2019, 230, 606- 615.
doi: 10.1016/j.chemosphere.2019.05.039
|
38 |
Del Bubba M , Anichini B , Bakari Z , et al. Physicochemical properties and sorption capacities of sawdust-based biochars and commercial activated carbons towards ethoxylated alkylphenols and their phenolic metabolites in effluent wastewater from a textile district[J]. Science of the Total Environment, 2020, 708, 135217.
doi: 10.1016/j.scitotenv.2019.135217
|
39 |
Yaseen D A , Scholz M . Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review[J]. International Journal of Environmental Science and Technology, 2019, 16 (2): 1193- 1226.
doi: 10.1007/s13762-018-2130-z
|
40 |
Ademoroti C , Ukponmwan D , Omode A . Studies of textile effluent discharges in Nigeria[J]. International Journal of Environmental Studies, 1992, 39 (4): 291- 296.
doi: 10.1080/00207239208710704
|
41 |
Villegas-Navarro A , Gonzaiez M C R , Lopez E R . Evaluation of Daphnia magna as an indicator of toxicity and treatment efficacy of textile wastewaters[J]. Environment International, 1999, 25 (5): 619- 624.
doi: 10.1016/S0160-4120(99)00034-3
|
42 |
张宇峰, 滕洁, 张雪英, 等. 印染废水处理技术的研究进展[J]. 工业水处理, 2003, 23 (4): 23- 27.
doi: 10.3969/j.issn.1005-829X.2003.04.006
|
43 |
Almeida E J R , Corso C R . Decolorization and removal of toxicity of textile azo dyes using fungal biomass pelletized[J]. International Journal of Environmental Science and Technology, 2019, 16 (3): 1319- 1328.
doi: 10.1007/s13762-018-1728-5
|
44 |
Hasanin M S . Sustainable hybrid silica extracted from rice husk with polyvinyl alcohol and nicotinic acid as multi adsorbent for textile wastewater treatment[J]. Environmental Science and Pollution Research, 2020, 27 (21): 26742- 26749.
doi: 10.1007/s11356-020-09104-5
|
45 |
Castro M , Nogueira V , Lopes I , et al. Treatment of a textile effluent by adsorption with cork granules and titanium dioxide nanomaterial[J]. Journal of Environmental Science and Health Part a-Toxic/ Hazardous Substances & Environmental Engineering, 2018, 53 (6): 524- 536.
URL
|
46 |
GilPavas E , Dobrosz-Gomez I , Gomez-Garcia M A . Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment[J]. Science of the Total Environment, 2019, 651, 551- 560.
doi: 10.1016/j.scitotenv.2018.09.125
|
47 |
Malamis S , Katsou E , Haralambous K J . Evaluation of the efficiency of a combined adsorption-ultrafiltration system for the removal of heavy metals, color, and organic matter from textile wastewater[J]. Separation Science and Technology, 2011, 46 (6): 920- 932.
doi: 10.1080/01496395.2010.551166
|
48 |
Mishra A K , Arockiadoss T , Ramaprabhu S . Study of removal of azo dye by functionalized multi walled carbon nanotubes[J]. Chemical Engineering Journal, 2010, 162 (3): 1026- 1034.
doi: 10.1016/j.cej.2010.07.014
|
49 |
do Nascimento G F O , da Costa G R B , de Araujo C M B , et al. Graphene-based materials production and application in textile wastewater treatment: Color removal and phytotoxicity using Lactuca sativa as bioindicator[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2020, 55 (1): 97- 106.
URL
|
50 |
Tigini V , Prigione V , Donelli I , et al. Cunninghamella elegans biomass optimisation for textile wastewater biosorption treatment: An analytical and ecotoxicological approach[J]. Applied Microbiology and Biotechnology, 2011, 90 (1): 343- 352.
doi: 10.1007/s00253-010-3010-8
|
51 |
赵雪, 何瑾馨, 展义臻. 印染废水处理技术的研究进展[J]. 化学工业与工程技术, 2009, 30 (2): 38- 43.
doi: 10.3969/j.issn.1006-7906.2009.02.010
|
52 |
Dulov A , Dulova N , Trapido M . Combined physicochemical treatment of textile and mixed industrial wastewater[J]. Ozone-Science & Engineering, 2011, 33 (4): 285- 293.
|
53 |
Pazdzior K , Wrebiak J , Ledakowicz S . Treatment of industrial textile wastewater in biological aerated filters-Microbial diversity analysis[J]. Fibres & Textiles in Eastern Europe, 2020, 28 (1): 106- 114.
URL
|
54 |
Vijayaraghavan G , Shanthakumar S . Removal of crystal violet dye in textile effluent by coagulation using algal alginate from brown algae Sargassum sp[J]. Desalination and Water Treatment, 2020, 196, 402- 408.
doi: 10.5004/dwt.2020.25569
|
55 |
Freitas T K F S , Oliveira V M , de Souza M T F , et al. Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra(A. esculentus) mucilage as natural coagulant[J]. Industrial Crops and Products, 2015, 76, 538- 544.
doi: 10.1016/j.indcrop.2015.06.027
|
56 |
Dotto J , Fagundes-Klen M R , Veit M T , et al. Performance of different coagulants in the coagulation/flocculation process of textile wastewater[J]. Journal of Cleaner Production, 2019, 208, 656- 665.
doi: 10.1016/j.jclepro.2018.10.112
|
57 |
de Wilt A , van Gijn K , Verhoek T , et al. Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process[J]. Water Research, 2018, 138, 97- 105.
doi: 10.1016/j.watres.2018.03.028
|
58 |
Liang Jieying , Ning Xunan , Sun Jian , et al. An integrated permanganate and ozone process for the treatment of textile dyeing wastewater: Efficiency and mechanism[J]. Journal of Cleaner Production, 2018, 204, 12- 19.
doi: 10.1016/j.jclepro.2018.08.112
|
59 |
Selcuk H , Eremektar G , Meric S . The effect of pre-ozone oxidation on acute toxicity and inert soluble COD fractions of a textile finishing industry wastewater[J]. Journal of Hazardous Materials, 2006, 137 (1): 254- 260.
doi: 10.1016/j.jhazmat.2006.01.055
|
60 |
Oktem Y A , Yuzer B , Aydin M I , et al. Chloride or sulfate-Consequences for ozonation of textile wastewater[J]. Journal of Environmental Management, 2019, 247, 749- 755.
URL
|
61 |
Nidheesh P V , Gandhimathi R , Ramesh S T . Degradation of dyes from aqueous solution by Fenton processes: A review[J]. Environmental Science and Pollution Research, 2013, 20 (4): 2099- 2132.
URL
|
62 |
Meric S , Selcuk H , Belgiorno V . Acute toxicity removal in textile finishing wastewater by Fenton's oxidation, ozone and coagulationflocculation processes[J]. Water Research, 2005, 39 (6): 1147- 1153.
doi: 10.1016/j.watres.2004.12.021
|
63 |
GilPavas E , Correa-Sanchez S , Acosta D A . Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability[J]. Environmental Pollution, 2019, 252, 1709- 1718.
doi: 10.1016/j.envpol.2019.06.104
|
64 |
Thomas M , Zdebik D . Treatment of real textile wastewater by using potassium ferrate(Ⅵ) and Fe(Ⅲ)/H2O2. Application of Aliivibrio Fischeri and Brachionus plicatilis tests for toxicity assessment[J]. Fibres & Textiles in Eastern Europe, 2019, 27 (3): 78- 84.
|
65 |
Kaur P , Sangal V K , Kushwaha J P . Parametric study of electro-Fenton treatment for real textile wastewater, disposal study and its cost analysis[J]. International Journal of Environmental Science and Technology, 2019, 16 (2): 801- 810.
doi: 10.1007/s13762-018-1696-9
|
66 |
Kaur P , Kushwaha J P , Sangal V K . Transformation products and degradation pathway of textile industry wastewater pollutants in Electro-Fenton process[J]. Chemosphere, 2018, 207, 690- 698.
doi: 10.1016/j.chemosphere.2018.05.114
|
67 |
Starling M C V M , Rodrigues dos Santos P H , Ribeiro de Souza F A , et al. Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse[J]. Environmental Science and Pollution Research, 2017, 24 (14): 12515- 12528.
doi: 10.1007/s11356-016-7395-5
|
68 |
Pazdzior K , Wrebiak J , Klepacz-Smolka A , et al. Influence of ozonation and biodegradation on toxicity of industrial textile wastewater[J]. Journal of Environmental Management, 2017, 195, 166- 173.
URL
|
69 |
Saratale R G , Saratale G D , Chang J S , et al. Bacterial decolorization and degradation of azo dyes: A review[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42 (1): 138- 157.
doi: 10.1016/j.jtice.2010.06.006
|
70 |
Frijters C , Vos R H , Scheffer G , et al. Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system[J]. Water Research, 2006, 40 (6): 1249- 1257.
doi: 10.1016/j.watres.2006.01.013
|
71 |
Vymazal J . Constructed wetlands for wastewater treatment: Five decades of experience[J]. Environmental Science & Technology, 2011, 45 (1): 61- 69.
URL
|
72 |
Khandare R V , Govindwar S P . Phytoremediation of textile dyes and effluents: Current scenario and future prospects[J]. Biotechnology Advances, 2015, 33 (8): 1697- 1714.
doi: 10.1016/j.biotechadv.2015.09.003
|
73 |
Hussain Z , Arslan M , Shabir G , et al. Remediation of textile bleaching effluent by bacterial augmented horizontal flow and vertical flow constructed wetlands: A comparison at pilot scale[J]. Science of the Total Environment, 2019, 685, 370- 379.
doi: 10.1016/j.scitotenv.2019.05.414
|
74 |
Oller I , Malato S , Sanchez-Perez J A . Combination of advanced oxidation processes and biological treatments for wastewater decontamination-A review[J]. Science of the Total Environment, 2011, 409 (20): 4141- 4166.
URL
|
75 |
Punzi M , Nilsson F , Anbalagan A , et al. Combined anaerobic-ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity[J]. Journal of Hazardous Materials, 2015, 292, 52- 60.
doi: 10.1016/j.jhazmat.2015.03.018
|
76 |
Somensi C A , Simionatto E L , Bertoli S L , et al. Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: Physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater[J]. Journal of Hazardous Materials, 2010, 175 (1/2/3): 235- 240.
URL
|
77 |
Baban A , Yediler A , Lienert D , et al. Ozonation of high strength segregated effluents from a woollen textile dyeing and finishing plant[J]. Dyes and Pigments, 2003, 58 (2): 93- 98.
doi: 10.1016/S0143-7208(03)00047-0
|
78 |
Assalin M R , Almeida E S , Rosa M A , et al. Application of ozonation process in industrial wastewaters: Textile, Kraft E-1 and whey effluents[J]. Environmental Technology, 2004, 25 (8): 867- 872.
doi: 10.1080/09593330.2004.9619379
|
79 |
Rosa E V C , Simionatto E L , Sierra M M D , et al. Toxicity-based criteria for the evaluation of textile wastewater treatment efficiency[J]. Environmental Toxicology and Chemistry, 2001, 20 (4): 839- 845.
doi: 10.1002/etc.5620200420
|
80 |
Castro A M , Nogueira V , Lopes I , et al. Evaluation of the potential toxicity of effluents from the textile industry before and after treatment[J]. Applied Science-Basel, 2019, 9 (18): 15.
URL
|
81 |
Giorgetti L , Talouizte H , Merzouki M , et al. Genotoxicity evaluation of effluents from textile industries of the region Fez-Boulmane, Morocco: A case study[J]. Ecotoxicology and Environmental Safety, 2011, 74 (8): 2275- 2283.
URL
|
82 |
Baban A , Yediler A , Ciliz N , et al. Biodegradability oriented treatability studies on high strength segregated wastewater of a woolen textile dyeing plant[J]. Chemosphere, 2004, 57 (7): 731- 738.
URL
|
83 |
Shehzadi M , Afzal M , Khan M U , et al. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria[J]. Water Research, 2014, 58, 152- 159.
URL
|
84 |
Kim H L , Cho J B , Park Y J , et al. Treatment and toxicity reduction of textile dyeing wastewater using the electrocoagulation-electroflotation process[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2016, 51 (8): 661- 668.
URL
|
85 |
Torres N H , Souza B S , Romanholo Ferreira L F , et al. Real textile effluents treatment using coagulation/flocculation followed by electrochemical oxidation process and ecotoxicological assessment[J]. Chemosphere, 2019, 236, 124309.
URL
|