1 |
Winkler M K H , Meunier C , Henriet O , et al. An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater[J]. Chemical Engineering Journal, 2018, 336, 489- 502.
doi: 10.1016/j.cej.2017.12.026
|
2 |
Nancharaiah Y V , Kiran K R G . Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2017, 247, 1128- 1143.
URL
|
3 |
Sepúlveda-Mardones Mario , José Luis Campos , Albert Magrí , et al. Moving forward in the use of aerobic granular sludge for municipal wastewater treatment: An overview[J]. Reviews in Environmental Science and Biotechnology, 2019, 18 (4): 741- 769.
doi: 10.1007/s11157-019-09518-9
|
4 |
董晶晶, 吴迪, 马柯, 等. 好氧颗粒污泥工艺强化脱氮研究进展[J]. 应用与环境生物学报, 2018, 24 (1): 177- 186.
URL
|
5 |
Xia Juntao , Ye Lin , Ren Hongqiang , et al. Microbial community structure and function in aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2018, 102 (9): 3967- 3979.
doi: 10.1007/s00253-018-8905-9
|
6 |
Bucci P , Coppotelli B , Morelli I , et al. Simultaneous heterotrophic nitrification and aerobic denitrification of wastewater in granular reactor: Microbial composition by next generation sequencing analysis[J]. Journal of Water Process Engineering, 2020, 36, 101254.
doi: 10.1016/j.jwpe.2020.101254
|
7 |
Long Bei , Yang Changzhu , Pu Wenhong , et al. Rapid cultivation of aerobic granule for the treatment of solvent recovery raffinate in a bench scale sequencing batch reactor[J]. Separation and Purification Technology, 2016, 160, 1- 10.
doi: 10.1016/j.seppur.2015.12.056
|
8 |
Long Bei , Yang Changzhu , Pu Wenhong , et al. Rapid cultivation of aerobic granular sludge in a continuous flow reactor[J]. Journal of Environmental Chemical Engineering, 2015, 3 (4): 2966- 2973.
doi: 10.1016/j.jece.2015.10.001
|
9 |
Long Bei , Yang Changzhu , Pu Wenhong , et al. The treatment of solvent recovery raffinate by aerobic granular sludge in a pilot scale sequencing batch reactor[J]. Journal of Water and Health, 2015, 13 (3): 746- 757.
doi: 10.2166/wh.2015.247
|
10 |
Long Bei , Yang Changzhu , Pu Wenhong , et al. Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reator[J]. Bioresource Technology, 2015, 182, 314- 322.
doi: 10.1016/j.biortech.2015.02.029
|
11 |
Chen Mingyuan , Lee D J , Yang Z , et al. Fluorecent staining for study of extracellular polymeric substances in membrane biofouling layers[J]. Environmental Science and Technology, 2006, 40 (21): 6642- 6646.
doi: 10.1021/es0612955
|
12 |
Chen Mingyuan , Lee D J , Tay J H . Distribution of extracellular polymeric substances in aerobic granules[J]. Applied Microbiology and Biotechnology, 2007, 73 (6): 1463- 1469.
doi: 10.1007/s00253-006-0617-x
|
13 |
Tsuneda S , Nagano T , Hoshino T , et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor[J]. Water Research, 2003, 37 (20): 4965- 4973.
doi: 10.1016/j.watres.2003.08.017
|
14 |
Toh S K , Tay J H , Moy B Y P , et al. Size-effect on the physical characteristics of the aerobic granule in a SBR[J]. Applied Microbiology and Biotechnology, 2003, 60 (6): 687- 695.
doi: 10.1007/s00253-002-1145-y
|
15 |
Zheng Yuming , Yu Hanqing , Liu Shuangjiang , et al. Formation and instability of aerobic granules under high organic loading conditions[J]. Chemosphere, 2006, 63 (10): 1791- 1800.
doi: 10.1016/j.chemosphere.2005.08.055
|
16 |
Kishida N , Kim J , Tsuneda S , et al. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms[J]. Water Research, 2006, 40 (12): 2303- 2310.
doi: 10.1016/j.watres.2006.04.037
|
17 |
梁东博, 卞伟, 王文啸, 等. 低温条件下好氧颗粒污泥培养及其脱氮性能研究[J]. 中国环境科学, 2019, 39 (2): 188- 194.
URL
|
18 |
Kowalchuk G A , Stephen J R . Ammonia-oxidizing bacteria: A model for molecular microbial ecology[J]. Annual Review of Microbiology, 2001, 55 (1): 485- 529.
doi: 10.1146/annurev.micro.55.1.485
|
19 |
Luo Jinghai , Hao Tianwei , Wei Li , et al. Impact of influent COD/N ratio on disintegration of aerobic granular sludge[J]. Water Research, 2014, 62, 127- 135.
doi: 10.1016/j.watres.2014.05.037
|
20 |
Szabo E , Liebana R , Hermansson M , et al. Microbial population dynamics and ecosystem functions of anoxic/aerobic granular sludge in sequencing batch reactors operated at different organic loading rates[J]. Frontiers in Microbiology, 2017, 8, 1- 14.
URL
|
21 |
Winkler M K H , Kleerebezem R , Loosdrecht M C M V . Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures[J]. Water Research, 2012, 46 (1): 136- 144.
doi: 10.1016/j.watres.2011.10.034
|
22 |
杨静丹, 祝铭韩, 刘琳, 等. 异养硝化-好氧反硝化菌HY3-2的分离及脱氮特性[J]. 中国环境科学, 2020, 40 (1): 294- 304.
doi: 10.3969/j.issn.1000-6923.2020.01.033
|
23 |
Lemaire R , Yuan Z , Blackall L L , et al. Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system[J]. Environmental Microbiology, 2008, 10 (2): 354- 363.
doi: 10.1111/j.1462-2920.2007.01456.x
|
24 |
He Qiulai , Zhou Jun , Wang Hongyu , et al. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor[J]. Bioresource Technology, 2016, 214, 1- 8.
doi: 10.1016/j.biortech.2016.04.088
|
25 |
左金龙, 姜黎明, 王薇, 等. 低DO条件下不同培养期颗粒污泥的PCR-DGGE分析[J]. 中国给水排水, 2015, 31 (15): 91- 95.
URL
|
26 |
Zhang Linan , Long Bei , Cheng Yuanyuan , et al. Rapid cultivation and stability of autotrophic nitrifying granular sludge[J]. Water Science and Technology, 2020, 81 (2): 309- 320.
doi: 10.2166/wst.2020.111
|
27 |
Zheng Tianlong , Li Pengyu , Wu Wenjun , et al. State of the art on granular sludge by using bibliometric analysis[J]. Applied Microbiology and Biotechnology, 2018, 102, 3453- 3473.
doi: 10.1007/s00253-018-8844-5
|
28 |
张朝升, 章文菁, 方茜, 等. DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响[J]. 环境工程学报, 2009, 3 (3): 413- 416.
URL
|
29 |
于鲁冀, 何青, 王震. 好氧颗粒污泥的培养及处理味精废水[J]. 环境工程学报, 2012, 6 (6): 1929- 1935.
URL
|
30 |
高景峰, 吴桂霞, 苏凯, 等. 处理垃圾渗滤液好氧颗粒污泥的培养及其脱氮特性[J]. 安全与环境学报, 2015, 15 (5): 244- 250.
URL
|
31 |
吴远远, 郝晓地, 许雪乔, 等. 低碳源污水的好氧颗粒污泥脱氮除磷中试研究[J]. 中国给水排水, 2019, 35 (23): 12- 16.
URL
|
32 |
Layer M , Villodres M G , Hernandez A , et al. Limited simultaneous nitrification-denitrification(SND) in aerobic granular sludge systems treating municipal wastewater: Mechanisms and practical implications[J]. Water Research X, 2020, 7, 100048.
doi: 10.1016/j.wroa.2020.100048
|
33 |
Tay J H , Liu Q S , Liu Y . The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Applied Microbiology and Biotechnology, 2001, 57 (1/2): 227- 233.
|
34 |
Liu Yu , Liu Qishan . Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors[J]. Biotechnology Advances, 2006, 24 (1): 115- 127.
doi: 10.1016/j.biotechadv.2005.08.001
|
35 |
王景峰, 王暄, 季民, 等. 好氧颗粒污泥膜生物反应器脱氮特性[J]. 环境科学, 2007, 28 (3): 528- 533.
doi: 10.3321/j.issn:0250-3301.2007.03.015
|
36 |
王良杰, 湛含辉, 孙璨. 以脱水污泥为接种污泥促进好氧污泥颗粒化[J]. 中国环境科学, 2016, 36 (11): 3405- 3411.
doi: 10.3969/j.issn.1000-6923.2016.11.026
|
37 |
Bella G D , Torregrossa M . Simultaneous nitrogen and organic carbon removal in aerobic granular sludge reactors operated with high dissolved oxygen concentration[J]. Bioresource Technology, 2013, 142 (8): 706- 713.
|
38 |
李冬, 魏子清, 劳会妹, 等. 阶梯曝气对城市污水好氧颗粒污泥系统的影响[J]. 环境科学, 2019, 40 (12): 5456- 5464.
URL
|
39 |
王文啸, 卞伟, 王盟, 等. 两段式曝气对好氧颗粒污泥脱氮性能的影响[J]. 环境科学, 2017, 38 (10): 4332- 4339.
URL
|
40 |
Zhang Binchao , Long Bei , Cheng Yuanyuan , et al. Rapid domestication of autotrophic nitrifying granular sludge and its stability during long-term operation[J]. Environmental Technology, 2021, 42 (16): 2587- 2598.
doi: 10.1080/09593330.2019.1707881
|
41 |
Szabó E , LiébanaR , Hermansson M , et al. Microbial population dynamics and ecosystem functions of anoxic aerobic granular sludge in sequencing batch reactors operated at different organic loading rates[J]. Frontiers in Microbiology, 2017, 8, 770.
doi: 10.3389/fmicb.2017.00770
|
42 |
齐泽坤, 王建芳, 钱飞跃, 等. 全程自养颗粒污泥快速启动及混合营养型脱氮性能分析[J]. 环境科学, 2020, 41 (10): 4653- 4660.
URL
|
43 |
张姚, 韩海成, 王伟刚, 等. 溶解氧对CANON颗粒污泥自养脱氮性能的影响[J]. 中国环境科学, 2017, 37 (12): 4501- 4510.
doi: 10.3969/j.issn.1000-6923.2017.12.012
|
44 |
谢璐琳, 王建芳, 钱飞跃, 等. 室温低氨氮基质单级自养脱氮颗粒污泥启动效能与污泥特性[J]. 环境科学, 2019, 40 (3): 1396- 1404.
URL
|
45 |
Wang Lan , Zheng Ping , Chen Tingting , et al. Performance of autotrophic nitrogen removal in the granular sludge bed reactor[J]. Bioresource Technology, 2012, 123, 78- 85.
doi: 10.1016/j.biortech.2012.07.112
|
46 |
贾方旭, 彭永臻, 杨庆. 厌氧氨氧化菌与其他细菌之间的协同竞争关系[J]. 环境科学学报, 2014, 34 (6): 1351- 1361.
URL
|
47 |
Ciesielski S , Czerwionka K , Sobotka D , et al. The metagenomic approach to characterization of the microbial community shift during the long-term cultivation of anammox-enriched granular sludge[J]. Journal of Applied Genetics, 2018, 59 (1): 109- 117.
doi: 10.1007/s13353-017-0418-1
|
48 |
Long Bei , Yang Changzhu , Pu Wenhong , et al. The stability of aerobic granular sludge treating municipal sludge deep dewatering filtrate in a bench scale sequencing batch reactor[J]. Bioresource Technology, 2014, 169, 244- 250.
doi: 10.1016/j.biortech.2014.06.094
|
49 |
张杰, 王玉颖, 李冬, 等. 多次进水-曝气的好氧颗粒污泥系统实验[J]. 环境科学, 2020, 41 (3): 1409- 1417.
URL
|
50 |
张云辉, 金锡标, 周思辰, 等. 亚硝酸盐反硝化颗粒污泥的二次启动试验研究[J]. 环境工程学报, 2009, 3 (8): 29- 32.
URL
|
51 |
Lew B , Stief P , Beliavski M , et al. Characterization of denitrifying granular sludge with and without the addition of external carbon source[J]. Bioresource Technology, 2012, 124, 413- 420.
doi: 10.1016/j.biortech.2012.08.049
|
52 |
刘晓宇, 郭延凯, 马志远, 等. 硝酸盐反硝化颗粒污泥的快速培养与理化特性[J]. 环境工程学报, 2016, 10 (3): 288- 292.
URL
|
53 |
王翻翻, 钱飞跃, 沈耀良, 等. 不同C/N条件下纳米零价铁对反硝化颗粒污泥性能的影响[J]. 环境工程学报, 2016, 10 (6): 2833- 2839.
URL
|
54 |
De Godos I , González C , Becares E , et al. Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor[J]. Applied Microbiology and Biotechnology, 2009, 82 (1): 187- 194.
doi: 10.1007/s00253-008-1825-3
|
55 |
Zhou Dandan , Zhang Chaofan , Fu Liang , et al. Responses of the Microalga Chlorophyta sp. to bacterial quorum sensing molecules (N-acylhomoserine lactones): Aromatic protein-induced self-aggregation[J]. Environmental Science and Technology, 2017, 51 (6): 3490- 3498.
doi: 10.1021/acs.est.7b00355
|
56 |
Zhang Yihao , Dong Xiaochuan , Liu Sen , et al. Rapid establishment and stable performance of a new algal-bacterial granule system from conventional bacterial aerobic granular sludge and preliminary analysis of mechanisms involved[J]. Journal of Water Process Engineering, 2020, 34, 101073.
doi: 10.1016/j.jwpe.2019.101073
|
57 |
Abouhend A S , McNair A , Kuo-Dahab W C , et al. The oxygenic photogranule process for aeration-free wastewater treatment[J]. Environmental Science and Technology, 2018, 52, 3503- 3511.
doi: 10.1021/acs.est.8b00403
|
58 |
Meng Fansheng , Huang Weiwei , Liu Dongfang , et al. Application of aerobic granulescontinuous flow reactor for saline wastewater treatment: Granular stability, lipid production and symbiotic relationship between bacteria and algae[J]. Bioresource Technology, 2019, 295, 122291.
|
59 |
Zhang Bin , Guo Yuan , Lens P N L , et al. Effect of light intensity on the characteristics of algal-bacterial granular sludge and the role of N-acyl-homoserine lactone in the granulation[J]. Science of the Total Environment, 2019, 659, 372- 383.
doi: 10.1016/j.scitotenv.2018.12.250
|
60 |
贾方旭, 彭永臻, 杨庆. 厌氧氨氧化菌与其他细菌之间的协同竞争关系[J]. 环境科学学报, 2014, 34 (6): 1351- 1361.
URL
|
61 |
Satoh H , Okabe S , Norimatsu N , et al. Significance of substrate C/N ratio on structure and activity of nitrifying biofilms determined by in situ hybridization and the use of microelectrodes[J]. Water Science and Technology, 2000, 41, 317- 321.
URL
|
62 |
Daverey A , Chen Y C , Sung S W , et al. Effect of zinc on anammox activity and performance of simultaneous partial nitrification, anammox and denitrification(SNAD) process[J]. Bioresource Technology, 2014, 165, 105- 110.
doi: 10.1016/j.biortech.2014.04.034
|