1 |
PURBA L D A, KHUDZARI J MD, IWAMOTO K,et al. Discovering future research trends of aerobic granular sludge using bibliometric approach[J]. Journal of Environmental Management, 2022, 303:114150. doi: 10.1016/j.jenvman.2021.114150
|
2 |
PRONK M, DE KREUK M K, DE BRUIN B,et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research, 2015, 84:207-217. doi: 10.1016/j.watres.2015.07.011
|
3 |
|
|
LIU Kai, LIU Min, CHEN Ying,et al. Formation mechanism of aerobic granular sludge[J]. Industrial Water Treatment, 2010, 30(11):16-19. doi: 10.11894/1005-829x.2010.30(11).16
|
4 |
WU Dan, LI Guifeng, SHI Zhijian,et al. Co-inhibition of salinity and Ni(Ⅱ) in the anammox-UASB reactor[J]. Science of the Total Environment, 2019, 669:70-82. doi: 10.1016/j.scitotenv.2019.03.130
|
5 |
MENG Fansheng, LIU Dongfang, PAN Yuwei,et al. Enhanced amount and quality of alginate-like exopolysaccharides in aerobic granular sludge for the treatment of salty wastewater[J]. BioResources, 2018, 14(1):139-165. doi: 10.15376/biores.14.1.139-165
|
6 |
DAVIS T A, VOLESKY B, MUCCI A. A review of the biochemistry of heavy metal biosorption by brown algae[J]. Water Research, 2003, 37(18):4311-4330. doi: 10.1016/s0043-1354(03)00293-8
|
7 |
SCHAMBECK C M, GIRBAL-NEUHAUSER E, BÖNI L,et al. Chemical and physical properties of alginate-like exopolymers of aerobic granules and flocs produced from different wastewaters[J]. Bioresource Technology, 2020, 312:123632. doi: 10.1016/j.biortech.2020.123632
|
8 |
LIN Y M, WANG L, CHI Z M,et al. Bacterial alginate role in aerobic granular bio-particles formation and settleability improvement[J]. Separation Science and Technology, 2008, 43(7):1642-1652. doi: 10.1080/01496390801973805
|
9 |
KARAKAS I, SAM S B, CETIN E,et al. Resource recovery from an aerobic granular sludge process treating domestic wastewater[J]. Journal of Water Process Engineering, 2020, 34:101148. doi: 10.1016/j.jwpe.2020.101148
|
10 |
LIN Yuemei, DE KREUK M, VAN LOOSDRECHT M C M,et al. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant[J]. Water Research, 2010, 44(11):3355-3364. doi: 10.1016/j.watres.2010.03.019
|
11 |
FELZ S, AL-ZUHAIRY S, AARSTAD O A,et al. Extraction of structural extracellular polymeric substances from aerobic granular sludge[J]. Journal of Visualized Experiments, 2016(115):e54534. doi: 10.3791/54534-v
|
12 |
MENG Fansheng, HUANG Weiwei, LIU Dongfang,et al. Application of aerobic granules-continuous flow reactor for saline wastewater treatment:Granular stability,lipid production and symbiotic relationship between bacteria and algae[J]. Bioresource Technology, 2020, 295:122291. doi: 10.1016/j.biortech.2019.122291
|
13 |
WANG Zhongwei, VAN LOOSDRECHT M C M, SAIKALY P E. Gradual adaptation to salt and dissolved oxygen:Strategies to minimize adverse effect of salinity on aerobic granular sludge[J]. Water Research, 2017, 124:702-712. doi: 10.1016/j.watres.2017.08.026
|
14 |
DE SOUSA ROLLEMBERG S L, SANTOS A F, FERREIRA T J T,et al. Evaluation of the production of alginate-like exopolysaccharides(ALE) and tryptophan in aerobic granular sludge systems[J]. Bioprocess and Biosystems Engineering, 2021, 44(2):259-270. doi: 10.1007/s00449-020-02439-w
|
15 |
YANG Yachun, LIU Xiang, WAN Chunli,et al. Accelerated aerobic granulation using alternating feed loadings:Alginate-like exopolysaccharides[J]. Bioresource Technology, 2014, 171:360-366. doi: 10.1016/j.biortech.2014.08.092
|
16 |
SCHAMBECK C M, MAGNUS B S, DE SOUZA L C R,et al. Biopolymers recovery:Dynamics and characterization of alginate-like exopolymers in an aerobic granular sludge system treating municipal wastewater without sludge inoculum[J]. Journal of Environmental Management, 2020, 263:110394. doi: 10.1016/j.jenvman.2020.110394
|
17 |
DE SOUSA ROLLEMBERG S L, DE OLIVEIRA L Q, NASCIMENTO DE BARROS A,et al. Pilot-scale aerobic granular sludge in the treatment of municipal wastewater:Optimizations in the start-up,methodology of sludge discharge,and evaluation of resource recovery[J]. Bioresource Technology, 2020, 311:123467. doi: 10.1016/j.biortech.2020.123467
|
18 |
DE AMORIM DE CARVALHO C, FERREIRA DOS SANTOS A, TAVARES FERREIRA T J,et al. Resource recovery in aerobic granular sludge systems:Is it feasible or still a long way to go?[J]. Chemosphere, 2021, 274:129881. doi: 10.1016/j.chemosphere.2021.129881
|
19 |
甘微. 从活性污泥胞外聚合物中回收类藻酸盐[D]. 北京:北京建筑大学,2021.
|
|
GAN Wei. Recovering alginate like extracellular polymers(ALE) from EPS of conventional activated sludge[D]. Beijing:Beijing University of Civil Engineering and Architecture,2021.
|
20 |
FRANCA R D G, PINHEIRO H M, VAN LOOSDRECHT M C M,et al. Stability of aerobic granules during long-term bioreactor operation[J]. Biotechnology Advances, 2018, 36(1):228-246. doi: 10.1016/j.biotechadv.2017.11.005
|
21 |
NANCHARAIAH Y V, KIRAN KUMAR REDDY G. Aerobic granular sludge technology:Mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2018, 247:1128-1143. doi: 10.1016/j.biortech.2017.09.131
|
22 |
MORADALI M F, GHODS S, REHM B H A. Alginates and their biomedical applications[M]. Singapore:Springer, 2018:1-26. doi: 10.1007/978-981-10-6910-9_1
|
23 |
DE SOUSA ROLLEMBERG S L, DE OLIVEIRA L Q, BARROS A R M,et al. Effects of carbon source on the formation,stability,bioactivity and biodiversity of the aerobic granule sludge[J]. Bioresource Technology, 2019, 278:195-204. doi: 10.1016/j.biortech.2019.01.071
|
24 |
MUHAMMAD A, WANG Zhongwei, SALAM KHALED W,et al. Importance of species sorting and immigration on the bacterial assembly of different-sized aggregates in a full-scale aerobic granular sludge plant[J]. Environmental Science & Technology, 2019, 53(14):8291-8301. doi: 10.1021/acs.est.8b07303
|
25 |
DE SOUSA ROLLEMBERG S L, FERREIRA T J T, FIRMINO P I M,et al. Impact of cycle type on aerobic granular sludge formation,stability,removal mechanisms and system performance[J]. Journal of Environmental Management, 2020, 256:109970. doi: 10.1016/j.jenvman.2019.109970
|
26 |
DE SOUSA ROLLEMBERG S L, BARROS A R M, DE LIMA J P M,et al. Influence of sequencing batch reactor configuration on aerobic granules growth:Engineering and microbiological aspects[J]. Journal of Cleaner Production, 2019, 238:117906. doi: 10.1016/j.jclepro.2019.117906
|
27 |
LI Wenwei, ZHANG Hailing, SHENG Guoping,et al. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process[J]. Water Research, 2015, 86:85-95. doi: 10.1016/j.watres.2015.06.034
|
28 |
CHEN Xingyu, WANG Jixiang, WANG Qian,et al. Simultaneous recovery of phosphorus and alginate-like exopolysaccharides from two types of aerobic granular sludge[J]. Bioresource Technology, 2022, 346:126411. doi: 10.1016/j.biortech.2021.126411
|
29 |
HUANG Wenli, HUANG Weiwei, LI Huifang,et al. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge[J]. Bioresource Technology, 2015, 193:549-552. doi: 10.1016/j.biortech.2015.06.120
|
30 |
ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease[J]. Nature Communications, 2018, 9:3294. doi: 10.1038/s41467-018-05470-4
|
31 |
CETIN E, KARAKAS E, DULEKGURGEN E,et al. Effects of high-concentration influent suspended solids on aerobic granulation in pilot-scale sequencing batch reactors treating real domestic wastewater[J]. Water Research, 2018, 131:74-89. doi: 10.1016/j.watres.2017.12.014
|
32 |
|
|
HAO Xiaodi, ZHAO Zicheng, LI Ji,et al. Mechanisms summary and potential analysis of EPS as a flame retardant[J]. Environmental Science, 2021, 42(6):2583-2594. doi: 10.13227/j.hjkx.202010178
|
33 |
NASROLLAHZADEH M, SHAFIEI N, NEZAFAT Z,et al. Recent progresses in the application of cellulose,starch,alginate,gum,pectin,chitin and chitosan based(nano) catalysts in sustainable and selective oxidation reactions:A review[J]. Carbohydrate Polymers, 2020, 241:116353. doi: 10.1016/j.carbpol.2020.116353
|
34 |
HAUG A, SMIDSRØD O, HÖGDAHL B,et al. Selectivity of some anionic polymers for divalent metal ions[J]. Acta Chemica Scandinavica, 1970, 24:843-854. doi: 10.3891/acta.chem.scand.24-0843
|
35 |
CAO Lianqi, LU Wei, MATA A,et al. Egg-box model-based gelation of alginate and pectin:A review[J]. Carbohydrate Polymers, 2020, 242:116389. doi: 10.1016/j.carbpol.2020.116389
|
36 |
FERNANDO I P S, LEE W, HAN E J,et al. Alginate-based nanomaterials:Fabrication techniques,properties,and applications[J]. Chemical Engineering Journal, 2020, 391:123823. doi: 10.1016/j.cej.2019.123823
|
37 |
ROEST B, LOOSDRECHT M V, LANGKAMP E J,et al. Recovery and reuse of alginate from granular Nereda sludge[J]. Water 21,2015,170(2):48.
|