1 |
NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3):1027-1284. doi: 10.1063/1.555808
|
2 |
BUXTON G V, GREENSTOCK C L, HELMAN W P,et al. Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals(·OH/·O - in aqueous solution)[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2):513-886. doi: 10.1063/1.555805
|
3 |
HOELDERICH W F, KOLLMER F. Oxidation reactions in the synthesis of fine and intermediate chemicals using environmentally benign oxidants and the right reactor system[J]. Pure and Applied Chemistry, 2000, 72(7):1273-1287. doi: 10.1351/pac200072071273
|
4 |
ZHOU Danan, CHEN Long, LI Jinjun,et al. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters:A state-of-the-art minireview[J]. Chemical Engineering Journal, 2018, 346:726-738. doi: 10.1016/j.cej.2018.04.016
|
5 |
|
|
SHAO Qiang, GUO Yiqiong. Removal of phenol from water by activation of persulfate with Fe-Mn catalyst[J]. Industrial Water Treatment, 2020, 40(7):94-97. doi: 10.11894/iwt.2019-0578
|
6 |
|
|
WU Dan, SU Bingqin, SONG Xiulan,et al. Research on the treatment of organic wastewater containing pyridine by ultraviolet light-activated persulfate process[J]. Industrial Water Treatment, 2018, 38(12):31-34. doi: 10.11894/1005-829x.2018.38(12).031
|
7 |
|
|
MI Jiru, TIAN Liping, LIU Lili,et al. Research progress on persulfate activation method[J]. Industrial Water Treatment, 2020, 40(7):12-17. doi: 10.11894/iwt.2019-0743
|
8 |
XIE Pengchao, GUO Yizhou, CHEN Yiqun,et al. Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants[J]. Chemical Engineering Journal, 2017, 314:240-248. doi: 10.1016/j.cej.2016.12.094
|
9 |
ACOSTA-RANGEL A, SÁNCHEZ-POLO M, ROZALEN M,et al. Comparative study of the oxidative degradation of different 4-aminobenzene sulfonamides in aqueous solution by sulfite activation in the presence of Fe(0),Fe(Ⅱ),Fe(Ⅲ)or Fe(Ⅵ)[J]. Water, 2019, 11:2332. doi: 10.3390/w11112332
|
10 |
LI Ge, WANG Cheng, YAN Yupeng,et al. Highly enhanced degradation of organic pollutants in hematite/sulfite/photo system[J]. Chemical Engineering Journal, 2020, 386:124007. doi: 10.1016/j.cej.2019.124007
|
11 |
GUO Yaoguang, LOU Xiaoyi, FANG Changling,et al. Novel photo-sulfite system:Toward simultaneous transformations of inorganic and organic pollutants[J]. Environmental Science & Technology, 2013, 47(19):11174-11181. doi: 10.1021/es403199p
|
12 |
CHEN Long, PENG Xinzi, LIU Jihao,et al. Decolorization of orange Ⅱ in aqueous solution by an Fe(Ⅱ)/sulfite system:Replacement of persulfate[J]. Industrial & Engineering Chemistry Research, 2012, 51(42):13632-13638. doi: 10.1021/ie3020389
|
13 |
XIE Pengchao, ZHANG Li, CHEN Jinhui,et al. Enhanced degradation of organic contaminants by zero-valent iron/sulfite process under simulated sunlight irradiation[J]. Water Research, 2019, 149:169-178. doi: 10.1016/j.watres.2018.10.078
|
14 |
BRANDT C, FABIAN I, ELDIK R VAN. Kinetics and mechanism of the iron(Ⅲ)-catalyzed autoxidation of sulfur(Ⅳ) oxides in aqueous solution. Evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism[J]. Inorganic Chemistry, 1994, 33(4):687-701. doi: 10.1021/ic00082a012
|
15 |
CHEN Xiaoyan, MIAO Wei, YANG Yulin,et al. Aeration-assisted sulfite activation with ferrous for enhanced chloramphenicol degradation[J]. Chemosphere, 2020, 238:124599. doi: 10.1016/j.chemosphere.2019.124599
|
16 |
ZHAO Xiaodan, WU Wenjing, JING Guohua,et al. Activation of sulfite autoxidation with CuFe 2O 4 prepared by MOF-templated method for abatement of organic contaminants[J]. Environmental Pollution, 2020, 260:114038. doi: 10.1016/j.envpol.2020.114038
|
17 |
HUANG Lizhi, WEI Xiuli, GAO Enlai,et al. Single Fe atoms confined in two-dimensional MoS 2 for sulfite activation:A biomimetic approach towards efficient radical generation[J]. Applied Catalysis B:Environmental, 2020, 268:118459. doi: 10.1016/j.apcatb.2019.118459
|
18 |
CHEN Long, HUANG Xingyun, TANG Min,et al. Rapid dephosphorylation of glyphosate by Cu-catalyzed sulfite oxidation involving sulfate and hydroxyl radicals[J]. Environmental Chemistry Letters, 2018, 16(4):1507-1511. doi: 10.1007/s10311-018-0767-y
|
19 |
ZHAO Xiaodan, WU Wenjing, YAN Yonggui. Efficient abatement of an iodinated X-ray contrast media iohexol by Co(Ⅱ) or Cu(Ⅱ) activated sulfite autoxidation process[J]. Environmental Science and Pollution Research, 2019, 26(24):24707-24719. doi: 10.1007/s11356-019-05601-4
|
20 |
YU Yingtan, LI Suqi, PENG Xinzi,et al. Efficient oxidation of bisphenol A with oxysulfur radicals generated by iron-catalyzed autoxidation of sulfite at circumneutral pH under UV irradiation[J]. Environmental Chemistry Letters, 2016, 14(4):527-532. doi: 10.1007/s10311-016-0573-3
|
21 |
SHAO Binbin, DONG Hongyu, FENG Liying,et al. Influence of [Sulfite]/[Fe(Ⅵ)]molar ratio on the active oxidants generation in Fe(Ⅵ)/sulfite process[J]. Journal of Hazardous Materials, 2020, 384:121303. doi: 10.1016/j.jhazmat.2019.121303
|
22 |
SHI Zhenyu, JIN Can, ZHANG Jing,et al. Insight into mechanism of arsanilic acid degradation in permanganate-sulfite system:Role of reactive species[J]. Chemical Engineering Journal, 2019, 359:1463-1471. doi: 10.1016/j.cej.2018.11.030
|
23 |
JIANG Bo, XIN Shuaishuai, LIU Yijie,et al. The role of thiocyanate in enhancing the process of sulfite reducing Cr(Ⅵ) by inhibiting the formation of reactive oxygen species[J]. Journal of Hazardous Materials, 2018, 343:1-9. doi: 10.1016/j.jhazmat.2017.09.015
|
24 |
ZHANG Jing, ZHU Liang, SHI Zhenyu,et al. Rapid removal of organic pollutants by activation sulfite with ferrate[J]. Chemosphere, 2017, 186:576-579. doi: 10.1016/j.chemosphere.2017.07.102
|
25 |
JIANG Bo, WANG Xianli, LIU Yukun,et al. The roles of polycarboxylates in Cr(Ⅵ)/sulfite reaction system:Involvement of reactive oxygen species and intramolecular electron transfer[J]. Journal of Hazardous Materials, 2016, 304:457-466. doi: 10.1016/j.jhazmat.2015.11.011
|
26 |
LI Rui, DONG Haoran, TIAN Ran,et al. Activation of sulfite by different Fe 0-based nanomaterials for oxidative removal of sulfamethazine in aqueous solution[J]. Separation and Purification Technology, 2020, 250:117230. doi: 10.1016/j.seppur.2020.117230
|
27 |
XU Jing, WANG Xiaoren, PAN Feng,et al. Synthesis of the mesoporous carbon-nano-zero-valent iron composite and activation of sulfite for removal of organic pollutants[J]. Chemical Engineering Journal, 2018, 353:542-549. doi: 10.1016/j.cej.2018.07.030
|
28 |
CHEN Yiqun, TONG Yang, XUE Yingwen,et al. Degradation of the β-blocker propranolol by sulfite activation using FeS[J]. Chemical Engineering Journal, 2020, 385:123884. doi: 10.1016/j.cej.2019.123884
|
29 |
|
|
BAI Jing, FU Yongmei, WANG Wenqi,et al. Research progresses on heterogeneous catalytic persulfate oxidation technology[J]. Environmental Protection of Chemical Industry, 2019, 39(3):247-254. doi: 10.3969/j.issn.1006-1878.2019.03.002
|
30 |
CHEN Long, LUO Tao, YANG Shaojie,et al. Efficient metoprolol degradation by heterogeneous copper ferrite/sulfite reaction[J]. Environmental Chemistry Letters, 2018, 16(2):599-603. doi: 10.1007/s10311-017-0696-1
|
31 |
WU Wenjing, ZHAO Xiaodan, JING Guohua,et al. Efficient activation of sulfite autoxidation process with copper oxides for iohexol degradation under mild conditions[J]. Science of the Total Environment, 2019, 695:133836. doi: 10.1016/j.scitotenv.2019.133836
|
32 |
MEI Yu, ZENG Jinchuan, SUN Mengying,et al. A novel Fenton-like system of Fe 2O 3 and NaHSO 3 for orange Ⅱ degradation[J]. Separation and Purification Technology, 2020, 230:115866. doi: 10.1016/j.seppur.2019.115866
|
33 |
YANG Yan, SUN Mengying, ZHOU Jin,et al. Degradation of orange Ⅱ by Fe@Fe 2O 3 core shell nanomaterials assisted by NaHSO 3 [J]. Chemosphere, 2020, 244:125588. doi: 10.1016/j.chemosphere.2019.125588
|
34 |
YUAN Yanan, ZHAO Dan, LI Jinjun,et al. Rapid oxidation of paracetamol by Cobalt(Ⅱ)catalyzed sulfite at alkaline pH[J]. Catalysis Today, 2018, 313:155-160. doi: 10.1016/j.cattod.2017.12.004
|
35 |
LIU Zizheng, YANG Shaojie, YUAN Yanan,et al. A novel heterogeneous system for sulfate radical generation through sulfite activation on a CoFe 2O 4 nanocatalyst surface[J]. Journal of Hazardous Materials, 2017, 324(Part B):583-592. doi: 10.1016/j.jhazmat.2016.11.029
|
36 |
CHEN Yiqun, LI Mengyu, TONG Yang,et al. Radical generation via sulfite activation on NiFe 2O 4 surface for estriol removal:Performance and mechanistic studies[J]. Chemical Engineering Journal, 2019, 368:495-503. doi: 10.1016/j.cej.2019.02.196
|
37 |
权晓琪,许佩瑶,杨帆,等. 分子筛催化剂-亚硫酸盐体系降解水中对乙酰氨基苯酚[J]. 分子催化,2019,33(6):561-569.
|
|
QUAN Xiaoqi, XU Peiyao, YANG Fan,et al. Degradation of acetaminophen in water by molecular sieve catalyst-sulfite system[J]. Journal of Molecular Catalysis,2019,33(6):561-569.
|
38 |
CAO Ying, QIU Wei, LI Juan,et al. Review on UV/sulfite process for water and wastewater treatments in the presence or absence of O 2 [J]. Science of the Total Environment, 2020, 765:142762. doi: 10.1016/j.scitotenv.2020.142762
|
39 |
MILH H, YU XINGYUE, CABOOTER D,et al. Degradation of ciprofloxacin using UV-based advanced removal processes:Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes[J]. The Science of the Total Environment, 2020, 764:144510. doi: 10.1016/j.scitotenv.2020.144510
|
40 |
ENTEZARI M, GODINI H, SHEIKHMOHAMMADI A,et al. Enhanced degradation of polychlorinated biphenyls with simultaneous usage of reductive and oxidative agents over UV/sulfite/TiO 2 process as a new approach of advanced oxidation/reduction processes[J]. Journal of Water Process Engineering, 2019, 32:100983. doi: 10.1016/j.jwpe.2019.100983
|