1 |
|
|
SUN Xiping. Experimental research on the removal of organic matter from urban sewage by the combined process flocculation-ultrafiltration[J]. Industrial Water Treatment, 2019, 39(6):73-76. doi: 10.11894/iwt.2018-0881
|
2 |
ALLOUL A, GANIGUÉ R, SPILLER M,et al. Capture-ferment-upgrade:A three-step approach for the valorization of sewage organics as commodities[J]. Environmental Science & Technology, 2018, 52(12):6729-6742. doi: 10.1021/acs.est.7b05712
|
3 |
NOGAJ T M, RAHMAN A, MILLER M W,et al. Soluble substrate removal determination through intracellular storage in high-rate activated sludge systems using stoichiometric mass balance approach[J]. New Biotechnology, 2019, 52:84-93. doi: 10.1016/j.nbt.2019.05.005
|
4 |
KIMURA K, YAMAKAWA M, HAFUKA A. Direct membrane filtration(DMF) for recovery of organic matter in municipal wastewater using small amounts of chemicals and energy[J]. Chemosphere, 2021, 277:130244. doi: 10.1016/j.chemosphere.2021.130244
|
5 |
CAGNETTA C, SAERENS B, MEERBURG F A,et al. High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery[J]. Bioresource Technology, 2019, 291:121833. doi: 10.1016/j.biortech.2019.121833
|
6 |
郭超然,黄勇,朱文娟,等. 城市污水有机物回收:捕获技术研究进展[J]. 化工进展,2021,40(3):1619-1633.
|
|
GUO Chaoran, HUANG Yong, ZHU Wenjuan,et al. Organics recovery from municipal wastewater:Research advances in capture technologies[J]. Chemical Industry and Engineering Progress,2021,40(3):1619-1633.
|
7 |
CHEN Yun, LIN Hui, SHEN Nan,et al. Phosphorus release and recovery from Fe-enhanced primary sedimentation sludge via alkaline fermentation[J]. Bioresource Technology, 2019, 278:266-271. doi: 10.1016/j.biortech.2019.01.094
|
8 |
SALEHIZADEH H, YAN Ning, FARNOOD R. Recent advances in polysaccharide bio-based flocculants[J]. Biotechnology Advances, 2018, 36(1):92-119. doi: 10.1016/j.biotechadv.2017.10.002
|
9 |
LIU Ruiting, CHI Lina, WANG Xinze,et al. Review of metal (hydr)oxide and other adsorptive materials for phosphate removal from water[J]. Journal of Environmental Chemical Engineering, 2018, 6(4):5269-5286. doi: 10.1016/j.jece.2018.08.008
|
10 |
FENG Qiyun, GAO Baoyu, YUE Qinyan,et al. Flocculation performance of papermaking sludge-based flocculants in different dye wastewater treatment:Comparison with commercial lignin and coagulants[J]. Chemosphere, 2021, 262:128416. doi: 10.1016/j.chemosphere.2020.128416
|
11 |
|
|
GUO Chaoran. Organic carbon capture and utilization of municipal wastewater based on hydrothermal technology[D]. Suzhou:Suzhou University of Science and Technology, 2020. doi: 10.1016/j.ccst.2021.100011
|
12 |
CHU Yongbao, LI Min, LIU Jinwei,et al. Molecular insights into the mechanism and the efficiency-structure relationship of phosphorus removal by coagulation[J]. Water Research, 2018, 147:195-203. doi: 10.1016/j.watres.2018.10.006
|
13 |
GALARNEAU E, GEHR R. Phosphorus removal from wastewaters:Experimental and theoretical support for alternative mechanisms[J]. Water Research, 1997, 31(2):328-338. doi: 10.1016/s0043-1354(96)00256-4
|
14 |
LIU Huan, BASAR I A, NZIHOU A,et al. Hydrochar derived from municipal sludge through hydrothermal processing:A critical review on its formation,characterization,and valorization[J]. Water Research, 2021, 199:117186. doi: 10.1016/j.watres.2021.117186
|
15 |
OWEN A T, FAWELL P D, SWIFT J D. The preparation and ageing of acrylamide/acrylate copolymer flocculant solutions[J]. International Journal of Mineral Processing, 2007, 84(1/2/3/4):3-14. doi: 10.1016/j.minpro.2007.05.003
|
16 |
葛亚玲. 壳聚糖接枝共聚絮凝剂的制备及其絮凝性能[D]. 重庆:重庆大学,2017.
|
|
GE Yaling. Study on the preparation and flocculation performance of chitosan grafted copolymer flocculant[D]. Chongqing:Chongqing University,2017.
|
17 |
|
|
|
18 |
高华星, 饶炬, 陆兴章, 等. 人工合成有机高分子絮凝剂[J]. 化工时刊,2000(9): 5-10.
|
|
GAO Huaxing, RAO Ju, LU Xingzhang, et al. Synthetic organic polymer flocculant[J]. Chemical Industry Times,2000(9):5-10.
|
19 |
LEE C S, ROBINSON J, CHONG M F. A review on application of flocculants in wastewater treatment[J]. Process Safety and Environmental Protection, 2014, 92(6):489-508. doi: 10.1016/j.psep.2014.04.010
|
20 |
YIN Zhihong, CHU Ruoyu, ZHU Liandong,et al. Application of chitosan-based flocculants to harvest microalgal biomass for biofuel production:A review[J]. Renewable and Sustainable Energy Reviews, 2021, 145:111159. doi: 10.1016/j.rser.2021.111159
|
21 |
郑怀礼. 聚丙烯酰胺类絮凝剂与絮凝科学[M]. 成都:科学出版社,2020:0-333.
|
|
ZHENG Huaili. Polyacrylamide flocculants and flocculation science[M]. Chengdu:Science Press,2020:0-333.
|
22 |
WANG Bin, WANG Shuangfei, LAM S S,et al. A review on production of lignin-based flocculants:Sustainable feedstock and low carbon footprint applications[J]. Renewable and Sustainable Energy Reviews, 2020, 134:110384. doi: 10.1016/j.rser.2020.110384
|
23 |
HASAN A, FATEHI P. Synthesis and characterization of lignin-poly(acrylamide)-poly(2-methacryloyloxyethyl) trimethyl ammonium chloride copolymer[J]. Journal of Applied Polymer Science, 2018, 135(23): 46338. doi: 10.1002/app.46338
|
24 |
MOHD ASHARUDDIN S, OTHMAN N, ALTOWAYTI W A H,et al. Recent advancement in starch modification and its application as water treatment agent[J]. Environmental Technology & Innovation, 2021, 23:101637. doi: 10.1016/j.eti.2021.101637
|
25 |
SANCHEZ-SALVADOR J L, BALEA A, MONTE M C,et al. Chitosan grafted/cross-linked with biodegradable polymers:A review[J]. International Journal of Biological Macromolecules, 2021, 178:325-343. doi: 10.1016/j.ijbiomac.2021.02.200
|
26 |
RAJ V, SHIM J J, LEE J. Grafting modification of okra mucilage:Recent findings,applications,and future directions[J]. Carbohydrate Polymers, 2020, 246:116653. doi: 10.1016/j.carbpol.2020.116653
|
27 |
KUMAR M, GEHLOT P S, PARIHAR D,et al. Promising grafting strategies on cellulosic backbone through radical polymerization processes:A review[J]. European Polymer Journal, 2021, 152:110448. doi: 10.1016/j.eurpolymj.2021.110448
|
28 |
YIN Jun, LIU Jiaze, CHEN Ting,et al. Influence of melanoidins on acidogenic fermentation of food waste to produce volatility fatty acids[J]. Bioresource Technology, 2019, 284:121-127. doi: 10.1016/j.biortech.2019.03.078
|
29 |
WANG Liping, LI Aimin. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: The dewatering performance and the characteristics of products[J]. Water Research, 2015, 68: 291-303. doi: 10.1016/j.watres.2014.10.016
|
30 |
PENAUD V, DELGENÈS J, MOLETTA R. Characterization of soluble molecules from thermochemically pretreated sludge[J]. Journal of Environmental Engineering, 2000, 126(5): 397-402. doi: 10.1061/(asce)0733-9372(2000)126:5(397)
|
31 |
WANG Qiandi, XU Qiongying, DU Zhengliang,et al. Mechanistic insights into the effects of biopolymer conversion on macroscopic physical properties of waste activated sludge during hydrothermal treatment:Importance of the Maillard reaction[J]. Science of the Total Environment, 2021, 769:144798. doi: 10.1016/j.scitotenv.2020.144798
|
32 |
HAO Shilai, REN Shuang, ZHOU Nan,et al. Molecular composition of hydrothermal liquefaction wastewater from sewage sludge and its transformation during anaerobic digestion[J]. Journal of Hazardous Materials, 2020, 383:121163. doi: 10.1016/j.jhazmat.2019.121163
|
33 |
ZHANG Dian, FENG Yiming, HUANG Haibo, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020, 138:105629. doi: 10.1016/j.envint.2020.105629
|
34 |
DWYER J, STARRENBURG D, TAIT S,et al. Decreasing activated sludge thermal hydrolysis temperature reduces product colour,without decreasing degradability[J]. Water Research, 2008, 42(18):4699-4709. doi: 10.1016/j.watres.2008.08.019
|
35 |
FENG Li, LI Xuhao, LU Wencong,et al. Preparation of a graft modified flocculant based on chitosan by ultrasonic initiation and its synergistic effect with kaolin for the improvement of acid blue 83(AB 83) removal[J]. International Journal of Biological Macromolecules, 2020, 150:617-630. doi: 10.1016/j.ijbiomac.2020.02.076
|
36 |
TIAN Zhenle, ZHANG Liping, SANG Xinxin,et al. Preparation and flocculation performance study of a novel amphoteric alginate flocculant[J]. Journal of Physics and Chemistry of Solids, 2020, 141:109408. doi: 10.1016/j.jpcs.2020.109408
|
37 |
TAVAKOLIAN M, WIEBE H, SADEGHI M A,et al. Dye removal using hairy nanocellulose:Experimental and theoretical investigations[J]. ACS Applied Materials & Interfaces, 2020, 12(4):5040-5049. doi: 10.1021/acsami.9b18679
|
38 |
TANG Xiaomin, HUANG Ting, ZHANG Shixin,et al. The role of sulfonated chitosan-based flocculant in the treatment of hematite wastewater containing heavy metals[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 585:124070. doi: 10.1016/j.colsurfa.2019.124070
|
39 |
HU Pan, XI Zhonghua, LI Yan,et al. Evaluation of the structural factors for the flocculation performance of a co-graft cationic starch-based flocculant[J]. Chemosphere, 2020, 240:124866. doi: 10.1016/j.chemosphere.2019.124866
|
40 |
ZHOU LÜ, ZHOU Hongjie, YANG Xiaoyu. Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment[J]. Separation and Purification Technology, 2019, 210:93-99. doi: 10.1016/j.seppur.2018.07.089
|
41 |
NGEMA S S, BASSON A K, MALIEHE T S. Synthesis,characterization and application of polyacrylamide grafted bioflocculant[J]. Physics and Chemistry of the Earth,Parts A/B/C, 2020, 115:102821. doi: 10.1016/j.pce.2019.102821
|
42 |
IBRAHIM A G, SALEH A S, ELSHARMA E M,et al. Chitosan- g-maleic acid for effective removal of copper and nickel ions from their solutions[J]. International Journal of Biological Macromolecules, 2019, 121:1287-1294. doi: 10.1016/j.ijbiomac.2018.10.107
|
43 |
SONG Yuefei, HU Qihua, LI Tiemei,et al. Advanced reclamation of hairwork dyeing effluent using tree-shaped cellulose flocculants and subsequent optimization of dual-membrane performance and fouling behavior[J]. Journal of Cleaner Production, 2020, 268:122348. doi: 10.1016/j.jclepro.2020.122348
|
44 |
YANG Zhen, HOU Tianyang, MA Jiangya,et al. Role of moderately hydrophobic chitosan flocculants in the removal of trace antibiotics from water and membrane fouling control[J]. Water Research, 2020, 177:115775. doi: 10.1016/j.watres.2020.115775
|
45 |
HASAN A, FATEHI P. Cationic kraft lignin-acrylamide as a flocculant for clay suspensions:1. Molecular weight effect[J]. Separation and Purification Technology, 2018, 207:213-221. doi: 10.1016/j.seppur.2018.06.047
|
46 |
MISHRA D K, TRIPATHY J, SRIVASTAVA A,et al. Graft copolymer(chitosan- g- N-vinyl formamide):Synthesis and study of its properties like swelling,metal ion uptake and flocculation[J]. Carbohydrate Polymers, 2008, 74(3):632-639. doi: 10.1016/j.carbpol.2008.04.015
|
47 |
GUO Kangying, GAO Baoyu, YUE Qinyan,et al. Characterization and performance of a novel lignin-based flocculant for the treatment of dye wastewater[J]. International Biodeterioration & Biodegradation, 2018, 133:99-107. doi: 10.1016/j.ibiod.2018.06.015
|
48 |
WANG Shoujuan, KONG Fangong, GAO Weijue,et al. Novel process for generating cationic lignin based flocculant[J]. Industrial & Engineering Chemistry Research, 2018, 57(19):6595-6608. doi: 10.1021/acs.iecr.7b05381
|
49 |
KONG Fangong, WANG Shoujuan, PRICE J T,et al. Water soluble kraft lignin-acrylic acid copolymer:Synthesis and characterization[J]. Green Chemistry, 2015, 17(8):4355-4366. doi: 10.1039/c5gc00228a
|
50 |
YADAV M, SAND A, BEHARI K. Synthesis and properties of a water soluble graft(chitosan- g-2-acrylamidoglycolic acid) copolymer[J]. International Journal of Biological Macromolecules, 2012, 50(5):1306-1314. doi: 10.1016/j.ijbiomac.2012.03.010
|
51 |
BERTELLA S, LUTERBACHER J S. Lignin functionalization for the production of novel materials[J]. Trends in Chemistry, 2020, 2(5):440-453. doi: 10.1016/j.trechm.2020.03.001
|
52 |
GUO Kangying, GAO Yao, GAO Baoyu,et al. Structure-activity relationships of the papermill sludge-based flocculants in different dye wastewater treatment[J]. Journal of Cleaner Production, 2020, 266:121944. doi: 10.1016/j.jclepro.2020.121944
|
53 |
王丹凤. 阳离子改性壳聚糖、纤维素合成污泥脱水絮凝剂[D]. 长春:吉林大学,2016.
|
|
WANG Danfeng. Synthesis of novel sludge dewatering flocculant of chitosan and cellulose modified by cation[D]. Changchun:Jilin University,2016.
|
54 |
SUOPAJÄRVI T, LIIMATAINEN H, HORMI O,et al. Coagulation-flocculation treatment of municipal wastewater based on anionized nanocelluloses[J]. Chemical Engineering Journal, 2013, 231:59-67. doi: 10.1016/j.cej.2013.07.010
|
55 |
SUOPAJÄRVI T, LIIMATAINEN H, HORMI O, et al. Coagulation-flocculation treatment of municipal wastewater based on anionized nanocelluloses[J]. Chemical Engineering Journal, 2013, 231: 59-67. doi: 10.1016/j.cej.2013.07.010
|
56 |
ERAGHI KAZZAZ A, FATEHI P. Technical lignin and its potential modification routes:A mini-review[J]. Industrial Crops and Products, 2020, 154:112732. doi: 10.1016/j.indcrop.2020.112732
|
57 |
YANG Ran, LI Haijiang, HUANG Mu,et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95:59-89. doi: 10.1016/j.watres.2016.02.068
|
58 |
GUO Chaoran, WANG Lingzhi, HUANG Yong,et al. Capturing organics from municipal wastewater using a primary sludge-derived polymer[J]. Journal of Water Process Engineering, 2022, 46:102567. doi: 10.1016/j.jwpe.2022.102567
|
59 |
|
|
WANG Lingzhi. Study on the preparation of wastewater organic matter aggregation media by hydrothermal liquid phase products[D]. Suzhou:Suzhou University of Science and Technology, 2022. doi: 10.1063/5.0079108
|