1 |
HWANG K L, BANG C H, ZOH K D. Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant[J]. Bioresource Technology, 2016, 214:881-884. doi: 10.1016/j.biortech.2016.05.047
|
2 |
|
|
LI Jian, ZHANG Shujing, JIN Yuquan,et al. Primary study on digestive methane desulfurization(H 2S) of sewage treatment plants[J]. Environmental Engineering, 2006, 24(1):43-46. doi: 10.3969/j.issn.1000-8942.2006.01.013
|
3 |
DEMIRBAS A, TAYLAN O, KAYA D. Biogas production from municipal sewage sludge(MSS)[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects, 2016, 38(20):3027-3033. doi: 10.1080/15567036.2015.1124944
|
4 |
SHEN Yanwen, LINVILLE J L, URGUN-DEMIRTAS M,et al. An overview of biogas production and utilization at full-scale wastewater treatment plants(WWTPs) in the United States:Challenges and opportunities towards energy-neutral WWTPs[J]. Renewable and Sustainable Energy Reviews, 2015, 50:346-362. doi: 10.1016/j.rser.2015.04.129
|
5 |
WEILAND P. Biogas production:Current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 85(4):849-860. doi: 10.1007/s00253-009-2246-7
|
6 |
ZHU Jing, WANG Qian, YUAN Mengdong,et al. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification(AME-D) process:A review[J]. Water Research, 2016, 90:203-215. doi: 10.1016/j.watres.2015.12.020
|
7 |
|
|
ZHONG Fohua, ZHANG Yanhao, XIA Siqing. Hydrogen-based hollow fiber membrane biofilm reactor for removing oxidized pollutants from drinking water[J]. Industrial Water Treatment, 2009, 29(11):7-10. doi: 10.3969/j.issn.1005-829X.2009.11.003
|
8 |
NERENBERG R. The membrane biofilm reactor(MBfR) as a counter-diffusional biofilm process[J]. Current Opinion in Biotechnology, 2016, 38:131-136. doi: 10.1016/j.copbio.2016.01.015
|
9 |
|
10 |
CRESPO J G, VELIZAROV S, REIS M A. Membrane bioreactors for the removal of anionic micropollutants from drinking water[J]. Current Opinion in Biotechnology, 2004, 15(5):463-468. doi: 10.1016/j.copbio.2004.07.001
|
11 |
XIA Siqing, ZHONG Fohua, ZHANG Yanhao,et al. Bio-reduction of nitrate from groundwater using a hydrogen-based membrane biofilm reactor[J]. Journal of Environmental Sciences, 2010, 22(2):257-262. doi: 10.1016/s1001-0742(09)60102-9
|
12 |
LU Jianjiang, YAN Weijia, SHANG Wentao,et al. Simultaneous enhancement of nitrate removal flux and methane utilization efficiency in MBfR for aerobic methane oxidation coupled to denitrification by using an innovative scalable double-layer membrane[J]. Water Research, 2021, 194:116936. doi: 10.1016/j.watres.2021.116936
|
13 |
JANG D, HWANG Y, SHIN H,et al. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors[J]. Bioresource Technology, 2013, 141:50-56. doi: 10.1016/j.biortech.2013.02.062
|
14 |
LEE K C, RITTMANN B E. Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane biofilm reactor[J]. Water Research, 2003, 37(7):1551-1556. doi: 10.1016/s0043-1354(02)00519-5
|
15 |
TROTSENKO Y A, KHMELENINA V N. Biology of extremophilic and extremotolerant methanotrophs[J]. Archives of Microbiology, 2002, 177(2):123-131. doi: 10.1007/s00203-001-0368-0
|
16 |
SUN Feiyun, DONG Wenyi, SHAO Mingfei,et al. Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor:Treatment performance and the effect of oxygen ventilation[J]. Bioresource Technology, 2013, 145:2-9. doi: 10.1016/j.biortech.2013.03.115
|
17 |
ZHOU Chen, ONTIVEROS-VALENCIA A, NERENBERG R,et al. Hydrogenotrophic microbial reduction of oxyanions with the membrane biofilm reactor[J]. Frontiers in Microbiology, 2018, 9:3268. doi: 10.3389/fmicb.2018.03268
|
18 |
LUO Yihao, CHEN Ran, WEN Lilian,et al. Complete perchlorate reduction using methane as the sole electron donor and carbon source[J]. Environmental Science & Technology, 2015, 49(4):2341-2349. doi: 10.1021/es504990m
|
19 |
林华,苑宇杭,韩亚梅,等. 氢基质生物膜反应器同步去除溴酸盐和高氯酸盐的影响因素分析[J]. 水处理技术,2021,47(2):112-118.
|
|
LIN Hua, YUAN Yuhang, HAN Yamei,et al. The influence factors of simultaneous removal of bromate and perchlorate by hydrogen-based membrane biofilm reactor[J]. Technology of Water Treatment,2021,47(2):112-118.
|
20 |
JIANG Minmin, ZHANG Yuanyuan, YUAN Yuhang,et al. Nitrate removal and dynamics of microbial community of a hydrogen-based membrane biofilm reactor at diverse nitrate loadings and distances from hydrogen supply end[J]. Water, 2020, 12(11):3196. doi: 10.3390/w12113196
|
21 |
CAI Chen, HU Shihu, GUO Jianhua,et al. Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate[J]. Water Research, 2015, 87:211-217. doi: 10.1016/j.watres.2015.09.026
|
22 |
LUO Jinghuan, CHEN Hui, YUAN Zhiguo,et al. Methane-supported nitrate removal from groundwater in a membrane biofilm reactor[J]. Water Research, 2018, 132:71-78. doi: 10.1016/j.watres.2017.12.064
|
23 |
ZHAO Heping, VAN GINKEL S, TANG Youneng,et al. Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor[J]. Environmental Science & Technology, 2011, 45(23):10155-10162. doi: 10.1021/es202569b
|
24 |
XIE Ting, YANG Qi, WINKLER M K H,et al. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor:Performance and microbial community structure[J]. Journal of Hazardous Materials, 2018, 357:244-252. doi: 10.1016/j.jhazmat.2018.06.011
|
25 |
DOWNING L S, NERENBERG R. Kinetics of microbial bromate reduction in a hydrogen-oxidizing,denitrifying biofilm reactor[J]. Biotechnology and Bioengineering, 2007, 98(3):543-550. doi: 10.1002/bit.21442
|
26 |
LUO Jinghuan, WU Mengxiong, YUAN Zhiguo,et al. Biological bromate reduction driven by methane in a membrane biofilm reactor[J]. Environmental Science & Technology Letters, 2017, 4(12):562-566. doi: 10.1021/acs.estlett.7b00488
|
27 |
XIA Siqing, XU Xiaoyin, ZHOU Lijie. Insights into selenate removal mechanism of hydrogen-based membrane biofilm reactor for nitrate-polluted groundwater treatment based on anaerobic biofilm analysis[J]. Ecotoxicology and Environmental Safety, 2019, 178:123-129. doi: 10.1016/j.ecoenv.2019.04.005
|
28 |
LAI Chunyu, WEN Lilian, SHI Lingdong,et al. Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor[J]. Environmental Science & Technology, 2016, 50(18):10179-10186. doi: 10.1021/acs.est.6b02807
|
29 |
|
|
XIA Siqing, YANG Xin, ZHONG Fohua,et al. Cr(Ⅵ) reduction from groundwater by hydrogen-based membrane biofilm reactor[J]. Journal of Tongji University:Natural Science, 2010, 38(9):1303-1308. doi: 10.3969/j.issn.0253-374x.2010.09.009
|
30 |
ZHONG Liang, LAI Chunyu, SHI Lingdong,et al. Nitrate effects on chromate reduction in a methane-based biofilm[J]. Water Research, 2017, 115:130-137. doi: 10.1016/j.watres.2017.03.003
|
31 |
LAI Chunyu, Panlong LÜ, DONG Qiuyi,et al. Bromate and nitrate bioreduction coupled with poly- β-hydroxybutyrate production in a methane-based membrane biofilm reactor[J]. Environmental Science & Technology, 2018, 52(12):7024-7031. doi: 10.1021/acs.est.8b00152
|
32 |
李海翔,张欢,蒋敏敏,等. 氢基质自养微生物还原降解水中溴酸盐的可行性[J]. 环境科学研究,2017,30(6):960-966.
|
|
LI Haixiang, ZHANG Huan, JIANG Minmin,et al. Feasibility of bioreductive degradation of bromate in water by autohydrogenotrophic microorganisms[J]. Research of Environmental Sciences,2017,30(6):960-966.
|
33 |
|
|
LIN Hua, SUN Jian, ZHANG Xuehong,et al. Effects of hydrogen pressure and influent flow rate on simultaneous removal of bromate and perchlorate in a hydrogen-based membrane biofilm reactor[J]. Chinese Journal of Environmental Engineering, 2019, 13(10):2393-2401. doi: 10.12030/j.cjee.201811117
|
34 |
MIAO Yu, LIAO Runhua, ZHANG Xuxiang,et al. Metagenomic insights into Cr(Ⅵ) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76:43-52. doi: 10.1016/j.watres.2015.02.042
|
35 |
LAI Chunyu, ZHONG Liang, ZHANG Yin,et al. Bioreduction of chromate in a methane-based membrane biofilm reactor[J]. Environmental Science & Technology, 2016, 50(11):5832-5839. doi: 10.1021/acs.est.5b06177
|
36 |
LI Haixiang, LIN Hua, XU Xiaoyin,et al. Simultaneous bioreduction of multiple oxidized contaminants using a membrane biofilm reactor[J]. Water Environment Research, 2017, 89(2):178-185. doi: 10.2175/106143016x14609975746686
|
37 |
|
|
CHANG Jiwen, JING Yuanyuan, GENG Yu,et al. Promote the low-carbon transformation of municipal sewage treatment industry and facilitate the realization of emission peak and carbon neutrality[J]. China Environmental Protection Industry, 2021(6):9-17. doi: 10.3969/j.issn.1006-5377.2021.06.002
|
38 |
GHAFARI S, HASAN M, AROUA M K. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria[J]. Journal of Hazardous Materials, 2009, 162(2/3):1507-1513. doi: 10.1016/j.jhazmat.2008.06.039
|
39 |
|
|
XIA Siqing, XU Xiaoyin, WANG Chenhui. Bioreduction of nitrate in a hydrogen-based membrane biofilm reactor(MBfR) using CO 2 as carbon source[J]. Environmental Chemistry, 2016, 35(5):1050-1057. doi: 10.7524/j.issn.0254-6108.2016.05.2015112501
|
40 |
JIANG Minmin, ZHENG Junjian, PEREZ-CALLEJA P,et al. New insight into CO 2-mediated denitrification process in H 2-based membrane biofilm reactor:An experimental and modeling study[J]. Water Research, 2020, 184:116177. doi: 10.1016/j.watres.2020.116177
|
41 |
KNIEF C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker[J]. Frontiers in Microbiology, 2015, 6:1346. doi: 10.3389/fmicb.2015.01346
|
42 |
STRONG P J, XIE S, CLARKE W P. Methane as a resource:Can the methanotrophs add value?[J]. Environmental Science & Technology, 2015, 49(7):4001-4018. doi: 10.1021/es504242n
|
43 |
MERAZ J L, DUBRAWSKI K L, ABBADI S H EL,et al. Membrane and fluid contactors for safe and efficient methane delivery in methanotrophic bioreactors[J]. Journal of Environmental Engineering, 2020, 146(6):03120006. doi: 10.1061/(asce)ee.1943-7870.0001703
|
44 |
ROSS M O, MACMILLAN F, WANG Jingzhou,et al. Particulate methane monooxygenase contains only mononuclear copper centers[J]. Science, 2019, 364(6440):566-570. doi: 10.1126/science.aav2572
|
45 |
HAGEMEIER C H, CHISTOSERDOVA L, LIDSTROM M E,et al. Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1[J]. European Journal of Biochemistry, 2000, 267(12):3762-3769. doi: 10.1046/j.1432-1327.2000.01413.x
|
46 |
YOCH D C, CHEN Y P, HARDIN M G. Formate dehydrogenase from the methane oxidizer Methylosinus trichosporium OB3b[J]. Journal of Bacteriology, 1990, 172(8):4456-4463. doi: 10.1128/jb.172.8.4456-4463.1990
|
47 |
MODIN O, FUKUSHI K, YAMAMOTO K. Denitrification with methane as external carbon source[J]. Water Research, 2007, 41(12):2726-2738. doi: 10.1016/j.watres.2007.02.053
|
48 |
CROSSMAN Z M, ABRAHAM F, EVERSHED R P. Stable isotope pulse-chasing and compound specific stable carbon isotope analysis of phospholipid fatty acids to assess methane oxidizing bacterial populations in landfill cover soils[J]. Environmental Science & Technology, 2004, 38(5):1359-1367. doi: 10.1021/es034619n
|
49 |
MA Ruochan, CHU Yixuan, WANG Jing,et al. Stable-isotopic and metagenomic analyses reveal metabolic and microbial link of aerobic methane oxidation coupled to denitrification at different O 2 levels[J]. Science of the Total Environment, 2021, 764:142901. doi: 10.1016/j.scitotenv.2020.142901
|
50 |
|
51 |
BOETIUS A, RAVENSCHLAG K, SCHUBERT C J,et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804):623-626. doi: 10.1038/35036572
|
52 |
GUERRERO-CRUZ S, VAKSMAA A, HORN M A,et al. Methanotrophs:Discoveries,environmental relevance,and a perspective on current and future applications[J]. Frontiers in Microbiology, 2021, 12:678057. doi: 10.3389/fmicb.2021.678057
|
53 |
CAI Chen, SHI Ying, GUO Jianhua,et al. Acetate production from anaerobic oxidation of methane via intracellular storage compounds[J]. Environmental Science & Technology, 2019, 53(13):7371-7379. doi: 10.1021/acs.est.9b00077
|
54 |
KURTH J M, SMIT N T, BERGER S,et al. Anaerobic methanotrophic archaea of the ANME-2d clade feature lipid composition that differs from other ANME archaea[J]. FEMS Microbiology Ecology, 2019, 95(7):fiz082. doi: 10.1093/femsec/fiz082
|
55 |
ETTWIG K F, BUTLER M K, LE PASLIER D,et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288):543-548. doi: 10.1038/nature08883
|
56 |
ETTWIG K F, SPETH D R, REIMANN J,et al. Bacterial oxygen production in the dark[J]. Frontiers in Microbiology, 2012, 3:273. doi: 10.3389/fmicb.2012.00273
|
57 |
THAUER R K. Functionalization of methane in anaerobic microorganisms[J]. Angewandte Chemie International Edition, 2010, 49(38):6712-6713. doi: 10.1002/anie.201002967
|