1 |
王建龙,陈灿. 生物吸附法去除重金属离子的研究进展[J]. 环境科学学报,2010,30(4):673-701.
|
|
WANG Jianlong, CHEN Can. Research advances in heavy metal removal by biosorption[J]. Acta Scientiae Circumstantiae,2010,30(4):673-701.
|
2 |
MALIK A. Metal bioremediation through growing cells[J]. Environment International,2004,30(2):261-278. doi:10.1016/j.envint.2003.08.001
|
3 |
GADD G M. Biosorption:Critical review of scientific rationale,environmental importance and significance for pollution treatment[J]. Journal of Chemical Technology & Biotechnology,2009,84(1):13-28. doi:10.1002/jctb.1999
|
4 |
尹华,陈烁娜,叶锦韶,等. 微生物吸附剂[M]. 北京:科学出版社,2015:75.
|
|
YIN Hua, CHEN Shuona, YE Jinshao,et al. Microbial Adsorbents[M]. Beijing:Science Press,2015:75.
|
5 |
HUANG Ning, MAO Juan, ZHAO Yan,et al. Multiple transcriptional mechanisms collectively mediate copper resistance in Cupriavidus gilardii CR3[J]. Environmental Science & Technology,2019,53(8):4609-4618. doi:10.1021/acs.est.8b06787
|
6 |
HARRISON J J, CERI H, TURNER R J. Multimetal resistance and tolerance in microbial biofilms[J]. Nature Reviews Microbiology,2007,5(12):928-938. doi:10.1038/nrmicro1774
|
7 |
PAL C, ASIANI K, ARYA S,et al. Metal resistance and its association with antibiotic resistance[J]. Advances in Microbial Physiology,2017,70:261-313. doi:10.1016/bs.ampbs.2017.02.001
|
8 |
HASMAN H, AARESTRUP F M. tcrB,a gene conferring transferable copper resistance in Enterococcus faecium:Occurrence,transferability,and linkage to macrolide and glycopeptide resistance[J]. Antimicrobial Agents and Chemotherapy,2002,46(5):1410-1416. doi:10.1128/aac.46.5.1410-1416.2002
|
9 |
ELEK S D, HIGNEY L. Resistogram typing:A new epidemiological tool—Application to Escherichia coli [J]. Journal of Medical Microbiology,1970,3(1):103-110. doi:10.1099/00222615-3-1-103
|
10 |
KODITSCHEK L K, GUYRE P. Resistance transfer fecal coliforms isolated from the Whippany river[J]. Water Research,1974,8(10):747-752. doi:10.1016/0043-1354(74)90019-0
|
11 |
GRIFFIN K, GAMBLEY C, BROWN P,et al. Copper-tolerance in Pseudomonas syringae pv. tomato and Xanthomonas spp. and the control of diseases associated with these pathogens in tomato and pepper. A systematic literature review[J]. Crop Protection,2017,96:144-150. doi:10.1016/j.cropro.2017.02.008
|
12 |
NAKAJIMA M, GOTO M, HIBI T. Similarity between copper resistance genes from Pseudomonas syringae pv. actinidiae and P. syringae pv. tomato [J]. Journal of General Plant Pathology,2002,68(1):68-74. doi:10.1007/pl00013056
|
13 |
DUNCAN R, CAMAKARIS J, LEE B T O,et al. Inducible plasmid-mediated copper resistance in Escherichia coli [J]. Microbiology,1985,131(4):939-943. doi:10.1099/00221287-131-4-939
|
14 |
TETAZ T J, LUKE R K. Plasmid-controlled resistance to copper in Escherichia coli [J]. Journal of Bacteriology,1983,154(3):1263-1268. doi:10.1128/jb.154.3.1263-1268.1983
|
15 |
ERARDI F X, FAILLA M L, FALKINHAM 3rd J O. Plasmid-encoded copper resistance and precipitation by Mycobacterium scrofulaceum [J]. Applied and Environmental Microbiology,1987,53(8):1951-1954. doi:10.1128/aem.53.8.1951-1954.1987
|
16 |
VARMA M M, THOMAS W A, PRASAD C. Resistance to inorganic salts and antibiotics among sewage-borne Enterobacteriaceae and Achromobacteriaceae[J]. The Journal of Applied Bacteriology,1976,41(2):347-349. doi:10.1111/j.1365-2672.1976.tb00643.x
|
17 |
MERGEAY M, HOUBA C, GERITS J. Extrachromosomal inheritance controlling resistance to cadmium,cobalt,copper and zinc ions:Evidence from curing in a Pseudomonas proceedings[J]. Archives Internationales De Physiologie et De Biochimie,1978,86(2):440-442. doi:http://dx.doi.org/
|
18 |
MERGEAY M, MONCHY S, VALLAEYS T,et al. Ralstonia metallidurans,a bacterium specifically adapted to toxic metals:Towards a catalogue of metal-responsive genes[J]. FEMS Microbiology Reviews,2003,27(2/3):385-410. doi:10.1016/s0168-6445(03)00045-7
|
19 |
VON ROZYCKI T, NIES D H. Cupriavidus metallidurans:Evolution of a metal-resistant bacterium[J]. Antonie Van Leeuwenhoek,2009,96(2):115-139. doi:10.1007/s10482-008-9284-5
|
20 |
ANDREWS J M. Determination of minimum inhibitory concentrations[J]. Journal of Antimicrobial Chemotherapy,2001,48(s1):5-16. doi:10.1093/jac/48.suppl_1.5
|
21 |
HASSEN A, SAIDI N, CHERIF M,et al. Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis [J]. Bioresource Technology,1998,65(1/2):73-82. doi:10.1016/s0960-8524(98)00011-x
|
22 |
MONSIEURS P, MOORS H, HOUDT R,et al. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network[J]. BioMetals,2011,24(6):1133-1151. doi:10.1007/s10534-011-9473-y
|
23 |
WANG Xiaoyu, CHEN Meili, XIAO Jingfa,et al. Genome sequence analysis of the naphthenic acid degrading and metal resistant bacterium Cupriavidus gilardii CR3[J]. PLoS One,2015,10(8):e0132881. doi:10.1371/journal.pone.0132881
|
24 |
WANG Xiaoyu, HUANG Ning, SHAO Jing,et al. Coupling heavy metal resistance and oxygen flexibility for bioremoval of copper ions by newly isolated Citrobacter freundii JPG1[J]. Journal of Environmental Management,2018,226:194-200. doi:10.1016/j.jenvman.2018.08.042
|
25 |
HASSEN A, SAIDI N, CHERIF M,et al. Resistance of environmental bacteria to heavy metals[J]. Bioresource Technology,1998,64(1):7-15. doi:10.1016/s0960-8524(97)00161-2
|
26 |
CHEN Xincai, SHI Jiyan, CHEN Yingxu,et al. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil[J]. Canadian Journal of Microbiology,2006,52(4):308-316. doi:10.1139/w05-157
|
27 |
BRUINS M R, KAPIL S, OEHME F W. Microbial resistance to metals in the environment[J]. Ecotoxicology and Environmental Safety,2000,45(3):198-207. doi:10.1006/eesa.1999.1860
|
28 |
MAIER R M, PEPPER I L, GERBA C P. 环境微生物学:下册[M]. 张甲耀,宋碧玉,郑连爽,等,译. 北京:科学出版社,2004:546-549.
|
|
MAIER R M, PEPPER I L, GERBA C P. Environmental Microbiology:Volume Ⅱ[M]. ZHANG Jiayao,SONG Biyu,ZHENG Lianshuang,et al,translated. Beijing:Science Press,2004:546-549.
|
29 |
LEMIRE J A, HARRISON J J, TURNER R J. Antimicrobial activity of metals:Mechanisms,molecular targets and applications[J]. Nature Reviews Microbiology,2013,11(6):371-384. doi:10.1038/nrmicro3028
|
30 |
WHEATON G, COUNTS J, MUKHERJEE A,et al. The confluence of heavy metal biooxidation and heavy metal resistance:Implications for bioleaching by extreme thermoacidophiles[J]. Minerals,2015,5(3):397-451. doi:10.3390/min5030397
|
31 |
林稚兰,田哲贤. 微生物对重金属的抗性及解毒机理[J]. 微生物学通报,1998,25(1):37-39.
|
|
LIN Zhilan, TIAN Zhexian. Microbial resistance to heavy metals and detoxification mechanism[J]. Microbiology,1998,25(1):37-39.
|
32 |
朴永哲,黄玮,崔玉波. 细菌对重金属的抗性及解毒机理研究进展[J]. 安全与环境学报,2015,15(6):250-254. doi:10.13637/j.issn.1009-6094.2015.06.052
|
|
PIAO Yongzhe, HUANG Wei, CUI Yubo. On the research advances of the resistance and de-toxicity power of bacteria from heavy metals[J]. Journal of Safety and Environment,2015,15(6):250-254. doi:10.13637/j.issn.1009-6094.2015.06.052
|
33 |
ROBALDS A, NAJA G M, KLAVINS M. Highlighting inconsistencies regarding metal biosorption[J]. Journal of Hazardous Materials,2016,304:553-556. doi:10.1016/j.jhazmat.2015.10.042
|
34 |
FANG Linchuan, WEI Xing, CAI Peng,et al. Role of extracellular polymeric substances in Cu(Ⅱ) adsorption on Bacillus subtilis and Pseudomonas putida [J]. Bioresource Technology,2011,102(2):1137-1141. doi:10.1016/j.biortech.2010.09.006
|
35 |
SHENG Guoping, YU Hanqing, LI Xiaoyan. Extracellular polymeric substances(EPS) of microbial aggregates in biological wastewater treatment systems:A review[J]. Biotechnology Advances,2010,28(6):882-894. doi:10.1016/j.biotechadv.2010.08.001
|
36 |
金睿男,王小雨,林雪,等. 胞外聚合物及其对重金属吸附作用的研究进展[J]. 工业水处理,2019,39(1):8-13. doi:10.11894/1005-829x.2019.39(1).008
|
|
JIN Ruinan, WANG Xiaoyu, LIN Xue,et al. Research progress in the extracellular polymeric substances and their adsorption effects on heavy metals[J]. Industrial Water Treatment,2019,39(1):8-13. doi:10.11894/1005-829x.2019.39(1).008
|
37 |
陈亚刚,陈雪梅,张玉刚,等. 微生物抗重金属的生理机制[J]. 生物技术通报,2009(10):60-65.
|
|
CHEN Yagang, CHEN Xuemei, ZHANG Yugang,et al. The physiological mechanism of microbial heavy metals tolerance[J]. Biotechnology Bulletin,2009(10):60-65.
|
38 |
TEITZEL G M, PARSEK M R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa [J]. Applied and Environmental Microbiology,2003,69(4):2313-2320. doi:10.1128/aem.69.4.2313-2320.2003
|
39 |
FANG Linchuan, YANG Shanshan, HUANG Qiaoyun,et al. Biosorption mechanisms of Cu(Ⅱ) by extracellular polymeric substancesfrom Bacillus subtilis [J]. Chemical Geology,2014,386:143-151. doi:10.1016/j.chemgeo.2014.08.017
|
40 |
HANSDA A, KUMAR V,Anshumali. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation[J]. World Journal of Microbiology & Biotechnology,2016,32(10):170. doi:10.1007/s11274-016-2117-1
|
41 |
王晓伟,姚国强,高鹏飞,等. 乳酸菌对重金属污染的生物修复作用[J]. 中国微生态学杂志,2014,26(8):968-972.
|
|
WANG Xiaowei, YAO Guoqiang, GAO Pengfei,et al. Bioremediation of heavy metal contamination by Lactic acid bacteria [J]. Chinese Journal of Microecology,2014,26(8):968-972.
|
42 |
JIMÉNEZ I, SPEISKY H. Effects of copper ions on the free radical-scavenging properties of reduced gluthathione:Implications of a complex formation[J]. Journal of Trace Elements in Medicine and Biology,2000,14(3):161-167. doi:10.1016/s0946-672x(00)80005-x
|
43 |
孙嘉龙,肖唐付,周连碧,等. 微生物与重金属的相互作用机理研究进展[J]. 地球与环境,2007,35(4):367-374. doi:10.3969/j.issn.1672-9250.2007.04.013
|
|
SUN Jialong, XIAO Tangfu, ZHOU Lianbi,et al. Studies on the mechanisms of interaction between microboes and heavy metals[J]. Earth and Environment,2007,35(4):367-374. doi:10.3969/j.issn.1672-9250.2007.04.013
|
44 |
YANG G C C, TSAI C M. Preparation of carbon fibers/carbon/alumina tubular composite membranes and their applications in treating Cu-CMP wastewater by a novel electrochemical process[J]. Journal of Membrane Science,2008,321(2):232-239. doi:10.1016/j.memsci.2008.04.060
|
45 |
MAKETON W, OGDEN K L. Synergistic effects of citric acid and polyethyleneimine to remove copper from aqueous solutions[J]. Chemosphere,2009,75(2):206-211. doi:10.1016/j.chemosphere.2008.12.005
|
46 |
SU Y N, LIN W S, HOU C H,et al. Performance of integrated membrane filtration and electrodialysis processes for copper recovery from wafer polishing wastewater[J]. Journal of Water Process Engineering,2014,4:149-158. doi:10.1016/j.jwpe.2014.09.012
|
47 |
CHOU W L, WANG C T, CHANG S Y. Study of COD and turbidity removal from real oxide-CMP wastewater by iron electrocoagulation and the evaluation of specific energy consumption[J]. Journal of Hazardous Materials,2009,168(2/3):1200-1207. doi:10.1016/j.jhazmat.2009.02.163
|
48 |
YANG Yushuang, HU Mingzhong, ZHOU Dandan,et al. Bioremoval of Cu2+ from CMP wastewater by a novel copper-resistant bacterium Cupriavidus gilardii CR3:Characteristics and mechanisms[J]. RSC Advances,2017,7(30):18793-18802. doi:10.1039/c7ra01163f
|
49 |
罗助强,王峰,杨海真. 化学机械研磨废水处理及回用技术的研究进展[J]. 环境科学与技术,2012,35(3):127-131. doi:10.3969/j.issn.1003-6504.2012.03.028
|
|
LUO Zhuqiang, WANG Feng, YANG Haizhen. Progress on treatment and reuse technologies of chemical mechanical polishing(CMP) wastewater[J]. Environmental Science & Technology,2012,35(3):127-131. doi:10.3969/j.issn.1003-6504.2012.03.028
|
50 |
LAI C L, LIN S H. Treatment of chemical mechanical polishing wastewater by electrocoagulation:System performances and sludge settling characteristics[J]. Chemosphere,2004,54(3):235-242. doi:10.1016/j.chemosphere.2003.08.014
|
51 |
印制电路板废水治理工程技术规范 [S]. doi:10.3403/00241687
|
|
Technical specification for wastewater treatment engineering for printed circuit boards [S]. doi:10.3403/00241687
|
52 |
STANLEY L C, OGDEN K L. Biosorption of copper(Ⅱ) from chemical mechanical planarization wastewaters[J]. Journal of Environmental Management,2003,69(3):289-297. doi:10.1016/j.jenvman.2003.09.009
|
53 |
MOSIER A P, BEHNKE J, JIN E T,et al. Microbial biofilms for the removal of Cu2+ from CMP wastewater[J]. Journal of Environmental Management,2015,160:67-72. doi:10.1016/j.jenvman.2015.05.016
|
54 |
WANG Xiaoyu, BUER G, FAN Wei,et al. Copper removal from semiconductor CMP wastewater in the presence of nano-SiO2 through biosorption[J]. Journal of Water Reuse and Desalination,2021,11(2):289-300. doi:10.2166/wrd.2021.098
|
55 |
MOSIER A P, JIN E, BEHNKE J,et al. Bacterial biofilms for sequestration of Cu2+ from CMP wastewater[C]//2014 40th Annual Northeast Bioengineering Conference(NEBEC). Boston,USA. IEEE,2014:1-2. doi:10.1109/nebec.2014.6972882
|
56 |
RUIZ A, OGDEN K L. Biotreatment of copper and isopropyl alcohol in waste from semiconductor manufacturing[J]. IEEE Transactions on Semiconductor Manufacturing,2004,17(4):538-543. doi:10.1109/tsm.2004.835708
|
57 |
YANG Yushuang, HU Mingzhong, ZHOU Dandan,et al. Bioremoval of Cu2+ from CMP wastewater by a novel copper-resistant bacterium Cupriavidus gilardii CR3:Characteristics and mechanisms[J]. RSC Advances,2017,7(30):18793-18802. doi:10.1039/c7ra01163f
|
58 |
胡学伟,李姝,荣烨,等. Cu2+对生物膜及其胞外聚合物的影响[J]. 化工学报,2014,65(3):1062-1067. doi:10.3969/j.issn.0438-1157.2014.03.041
|
|
HU Xuewei, LI Shu, RONG Ye,et al. Effect of Cu2+ on biofilm and extracellular polymeric substance[J]. CIESC Journal,2014,65(3):1062-1067. doi:10.3969/j.issn.0438-1157.2014.03.041
|