1 |
刘力源,沈旭,王璐,等. 硫酸盐还原菌在废水处理领域发展态势分析[J]. 工业水处理,2022,42(7):1-20.
|
|
LIU Liyuan, SHENG Xu, WANG Lu,et al. Development trend analyses of wastewater treatment by sulfatereducing bacteria[J]. Industrial Water Treatment,2022,42(7):1-20.
|
2 |
李梦醒,潘瑞,徐冰洁,等. 砷的还原热力学及纳米零价铁除砷初步探究[J]. 工业水处理,2021,41(4):37-42.
|
|
LI Mengxing, PAN Rui, XU Bingjie,et al. Preliminary study on the reduction thermodynamics of arsenic and removal of arsenic by nano zero-valent iron[J]. Industrial Water Treatment,2021,41(4):37-42.
|
3 |
袁露成,龚傲,吴选高,等. 过渡金属氧化物去除水中砷的研究进展[J]. 湿法冶金,2020,39(3):175-181.
|
|
YUAN Lucheng, GONG Ao, WU Xuangao,et al. Research progress on removal of arsenic in water using transition metal oxides[J]. Hydrometallurgy of China,2020,39(3):175-181.
|
4 |
曾辉平,于亚萍,吕赛赛,等. 基于铁锰泥的除砷颗粒吸附剂制备及其比较[J]. 环境科学,2019,40(11):5002-5008. doi:10.13227/j.hjkx.201904232
|
|
ZENG Huiping, YU Yaping, Saisai LÜ,et al. Preparation and comparison of arsenic removal granular adsorbent based on iron-manganese sludge[J]. Environmental Science,2019,40(11):5002-5008. doi:10.13227/j.hjkx.201904232
|
5 |
MORALES-SIMFORS N, BUNDSCHUH J, HERATH I,et al. Arsenic in Latin America:A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences[J]. Science of the Total Environment,2020,716:135564. doi:10.1016/j.scitotenv.2019.135564
|
6 |
赵思佳. 有色冶金工业含砷烟尘处理及利用研究进展[J]. 湖南有色金属,2012,28(3):20-24. doi:10.3969/j.issn.1003-5540.2012.03.007
|
|
ZHAO Sijia. Research progress ofarsenic dust treatment and utilization in nonferrous metallurgy industry[J]. Hunan Nonferrous Metals,2012,28(3):20-24. doi:10.3969/j.issn.1003-5540.2012.03.007
|
7 |
WANG Chunbo, LIU Huimin, ZHANG Yue,et al. Review of arsenic behavior during coal combustion:Volatilization,transformation,emission and removal technologies[J]. Progress in Energy and Combustion Science,2018,68:1-28. doi:10.1016/j.pecs.2018.04.001
|
8 |
刘鹏程,肖利,陈艺锋,等. 预氧化-亚铁盐除砷工艺研究[J]. 湖南工业大学学报,2018,32(5):60-65. doi:10.3969/j.issn.1673-9833.2018.05.011
|
|
LIU Pengcheng, XIAO Li, CHEN Yifeng,et al. Study on the arsenic removal process by pre-oxidation ferrous salt[J]. Journal of Hunan University of Technology,2018,32(5):60-65. doi:10.3969/j.issn.1673-9833.2018.05.011
|
9 |
刘兴旺,陈建宏,胡晞. 改性铁矾土对废水中砷的吸附效能研究[J]. 工业水处理,2016,36(10):44-47. doi:10.11894/1005-829x.2016.36(10).044
|
|
LIU Xingwang, CHEN Jianhong, HU Xi. Research on the adsorption capacity of modified laterite for arsenic in wastewater[J]. Industrial Water Treatment,2016,36(10):44-47. doi:10.11894/1005-829x.2016.36(10).044
|
10 |
彭映林,肖斌. 两级中和-铁盐沉淀法处理高砷废水[J]. 工业水处理,2016,36(6):64-68. doi:10.11894/1005-829x.2016.36(6).016
|
|
PENG Yinglin, XIAO Bin. Treatment of high arsenic content wastewater by two-step neutralization-iron salt precipitation[J]. Industrial Water Treatment,2016,36(6):64-68. doi:10.11894/1005-829x.2016.36(6).016
|
11 |
INOUE K, OTANI H, HONMA Y. Scorodite-type iron-arsenic compound particles,production method thereof,and arsenic-containing solid:US,8388927[P]. 2013-03-05.
|
12 |
LIAO Tianqi, XI Yunhao, ZHANG Libo,et al. Removal of toxic arsenic(As(Ⅲ)) from industrial wastewater by ultrasonic enhanced zero-valent lead combined with CuSO4 [J]. Journal of Hazardous Materials,2021,408:124464. doi:10.1016/j.jhazmat.2020.124464
|
13 |
陈建宏,刘兴旺,游志敏. 改性铁矾土深度处理含砷废水试验研究[J]. 工业水处理,2016,36(4):30-33. doi:10.11894/1005-829x.2016.36(4).007
|
|
CHEN Jianhong, LIU Xingwang, YOU Zhimin. Experimental research on the modified laterite for the advanced treatment of wastewater containing arsenic[J]. Industrial Water Treatment,2016,36(4):30-33. doi:10.11894/1005-829x.2016.36(4).007
|
14 |
廖家隆,张喆秋,陈丽杰,等. 含砷废水处理研究进展[J]. 有色金属科学与工程,2018,9(1):86-91.
|
|
LIAO Jialong, ZHANG Zheqiu, CHEN Lijie,et al. Research progress of arsenic-containing wastewater treatment[J]. Nonferrous Metals Science and Engineering,2018,9(1):86-91.
|
15 |
GONZÁLEZ-CONTRERAS P, WEIJMA J, BUISMAN C JN. Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal[J]. Water Research,2012,46(18):5883-5892. doi:10.1016/j.watres.2012.07.055
|
16 |
王永良,肖力,韩培伟,等. 针对含砷硫酸烧渣酸浸液的铁盐沉淀固砷[J]. 环境工程学报,2019,13(1):162-168. doi:10.12030/j.cjee.201807091
|
|
WANG Yongliang, XIAO Li, HAN Peiwei,et al. Arsenic fixation in acid leaching solution obtained from arsenic-containing pyritecinderby iron salt precipitation[J]. Chinese Journal of Environmental Engineering,2019,13(1):162-168. doi:10.12030/j.cjee.201807091
|
17 |
张俊峰,王雷. 从高砷锑烟灰碱浸液中脱除砷[J]. 湿法冶金,2021,40(4):338-341.
|
|
ZHANG Junfeng, WANG Lei. Removal of arsenic from alkali leaching solution of high arsenic antimony cigarette ash[J]. Hydrometallurgy of China,2021,40(4):338-341.
|
18 |
刘永龙,郭庆民. 石灰-铁盐+双氧水法在铜冶炼酸性废水处理中的应用[J]. 硫酸工业,2020(3):42-45.
|
|
LIU Yonglong, GUO Qingmin. Application and practice of lime-iron salt deepoxidation method in acid wastewater treatment of copper smelting[J]. Sulphuric Acid Industry,2020(3):42-45.
|
19 |
CUI Jie, DU Yaguang, XIAO Hongxia,et al. A new process of continuous three-stage co-precipitation of arsenic with ferrous iron and lime[J]. Hydrometallurgy,2014,146:169-174. doi:10.1016/j.hydromet.2014.03.012
|
20 |
王维欢,唐晓亮,李虎平,等. 稀土矿焙烧烟气吸收尾液除砷工艺研究[J]. 稀土,2022,43:1-6.
|
|
WANG Weihuan, TANG Xiaoliang, LI Huping,et al. Study on Removal of arsenic from rare-earth mineral roasting gas absorption liquid[J]. 稀土,2022,43:1-6.
|
21 |
胡兆平,刘阳,李玲,等. 硫化钠脱除磷酸中砷元素的研究[J]. 肥料与健康,2020,47(3):29-31. doi:10.3969/j.issn.2096-7047.2020.03.007
|
|
HU Zhaoping, LIU Yang, LI Ling,et al. Study of removal of arsenic from phosphoric acid by sodium sulfide[J]. Fertilizer & Health,2020,47(3):29-31. doi:10.3969/j.issn.2096-7047.2020.03.007
|
22 |
蔡晨龙,杨应宝,陈全坤,等. 污酸两段硫化除砷工艺[J]. 有色金属科学与工程,2019,10(4):22-27.
|
|
CAI Chenlong, YANG Yingbao, CHEN Quankun,et al. Arsenic removal from waste acid by two-stage sulfurization[J]. Nonferrous Metals Science and Engineering,2019,10(4):22-27.
|
23 |
熊义期,李超,郭殿. 冶炼烟气制酸装置污酸硫化氢法除砷生产实践[J]. 硫酸工业,2020(11):41-43. doi:10.3969/j.issn.1002-1507.2020.11.013
|
|
XIONG Yiqi, LI Chao, GUO Dian. Production practice of arsenic removal from waste acid by hydrogen sulfide insulphuricacid plant with smelter flue gas[J]. Sulphuric Acid Industry,2020(11):41-43. doi:10.3969/j.issn.1002-1507.2020.11.013
|
24 |
曹俊雅,张凯伦,李媛媛,等. 臭氧氧化合成臭葱石除砷[J]. 过程工程学报,2018,18(3):517-521.
|
|
CAO Junya, ZHANG Kailun, LI Yuanyuan,et al. Arsenic removal by scorodite synthesis using ozone oxidation[J]. The Chinese Journal of Process Engineering,2018,18(3):517-521.
|
25 |
LU Ming, SUN Lifa, LI Qingchao,et al. Study on arsenic removal by scorodite[J]. IOP Conference Series:Earth and Environmental Science,2019,218:012102. doi:10.1088/1755-1315/218/1/012102
|
26 |
GONZALEZ-CONTRERAS P, WEIJMA J, VANDER WEIJDEN R,et al. Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal[J]. Environmental Science &Technology,2010,44(2):675-680. doi:10.1021/es902063t
|
27 |
POZO G, VAN HOUTVEN D, FRANSAER J,et al. Arsenic immobilization as crystalline scorodite by gas-diffusion electrocrystallization[J]. Reaction Chemistry & Engineering,2020,5(6):1118-1128. doi:10.1039/d0re00054j
|
28 |
WANG An, ZHOU Kanggen, ZHANG Xuekai,et al. Arsenic removal from highly-acidic wastewater with high arsenic content by copper-chloride synergistic reduction[J]. Chemosphere,2020,238:124675. doi:10.1016/j.chemosphere.2019.124675
|
29 |
BASKAN M B, PALA A. A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate[J]. Desalination,2010,254(1/2/3):42-48. doi:10.1016/j.desal.2009.12.016
|
30 |
WU Kun, WANG Hongjie, LIU Ruiping,et al. Arsenic removal from a high-arsenic wastewater using in situ formed Fe-Mn binary oxide combined with coagulation by poly-aluminum chloride[J]. Journal of Hazardous Materials,2011,185(2/3):990-995. doi:10.1016/j.jhazmat.2010.10.003
|
31 |
WAN Wei, PEPPING T J, BANERJI T,et al. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation[J]. Water Research,2011,45(1):384-392. doi:10.1016/j.watres.2010.08.016
|
32 |
邵谱生. 电凝法在处理湿法钨冶炼含砷废水中的研究与应用[D]. 南昌:南昌航空大学,2014.
|
|
SHAO Pusheng. Research and Application of electrocoagulation in the treatment of arsenic wastewater from wet tungsten smelting[D]. Nanchang:Nanchang Hangkong University,2014.
|
33 |
张浩,李诚,顾悦,等. 电絮凝法同步去除地下水中砷、锰、氟的效能及机理[J]. 工业水处理,2021,41(7):121-125.
|
|
ZHANG Hao, LI Cheng, GU Yue,et al. Performance and mechanism of simultaneous removal of arsenic,manganese and fluorine from groundwater by electro-flocculation[J]. Industrial Water Treatment,2021,41(7):121-125.
|
34 |
韩晓霞,崔洋,杨卫芳,等. 剩余污泥吸附废水中汞和砷的研究[J]. 工业水处理,2015,35(6):50-53. doi:10.11894/1005-829x.2015.35(6).013
|
|
HAN Xiaoxia, CUI Yang, YANG Weifang,et al. Study on the adsorption of residual sludge for mercury and arsenic in wastewater[J]. Industrial Water Treatment,2015,35(6):50-53. doi:10.11894/1005-829x.2015.35(6).013
|
35 |
PEHLIVAN E, TRAN T H, OUÉDRAOGO W K I,et al. Removal of As(Ⅴ) from aqueous solutions by iron coated rice husk[J]. Fuel Processing Technology,2013,106:511-517. doi:10.1016/j.fuproc.2012.09.021
|
36 |
PEHLIVAN E, TRAN H T, OUÉDRAOGO W K I,et al. Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(Ⅴ) from aqueous solutions[J]. Food Chemistry,2013,138(1):133-138. doi:10.1016/j.foodchem.2012.09.110
|
37 |
DAS T K, SAKTHIVEL T S, JEYARANJAN A,et al. Ultra-high arsenic adsorption by graphene oxide iron nanohybrid:removal mechanisms and potential applications[J]. Chemosphere,2020,253:126702. doi:10.1016/j.chemosphere.2020.126702
|
38 |
OUÉDRAOGO I W K, PEHLIVAN E, TRAN H T,et al. Removal of arsenic(Ⅴ) from aqueous medium using manganese oxide coated lignocellulose/silica adsorbents[J]. Toxicological & Environmental Chemistry,2016:1-12. doi:10.1080/02772248.2015.1133815
|
39 |
王舟. 绿色介孔FeOOH/γ-Al2O3复合球形颗粒的构筑及其吸附水溶液中有害物质的研究[D]. 镇江:江苏大学,2018.
|
|
WANG Zhou. Fabrication of green mesoporous FeOOH/γ-Al2O3 composite spherical particles and their adsorption of hazards from aqueous solutions[D]. Zhenjiang:Jiangsu University,2018.
|
40 |
Sakthivel T S,DAS S, PRATT C J,et al. One-pot synthesis of a ceria-graphene oxide composite for the efficient removal of arsenic species[J]. Nanoscale,2017,9(10):3367-3374. doi:10.1039/c6nr07608d
|
41 |
MERODIO-MORALES E E, REYNEL-ÁVILA H E, MENDOZA-CASTILLO D I,et al. Lanthanum-and cerium-based functionalization of chars and activated carbons for the adsorption of fluoride and arsenic ions[J]. International Journal of Environmental Science and Technology,2020,17(1):115-128. doi:10.1007/s13762-019-02437-w
|
42 |
AMIN M, ALAZBA A, AMIN M. Absorption behaviours of copper,lead,and arsenic in aqueous solution using date palm fibres and orange peel:Kinetics and thermodynamics[J]. Polish Journal of Environmental Studies,2017,26(2):543-557. doi:10.15244/pjoes/66963
|
43 |
SHAKOOR M B, NIAZI N K, BIBI I,et al. Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater[J]. Science of the Total Environment,2018,645:1444-1455. doi:10.1016/j.scitotenv.2018.07.218
|
44 |
张华夏,石林. 羧甲基纤维素钠稳定纳米硫化亚铁吸附砷研究[J]. 水处理技术,2019,45(4):37-42.
|
|
ZHANG Huaxia, SHI Lin. Study on adsorption of arsenic on carboxymethylcellulose sodium stabilized ferrous sulfide nanoparticles[J]. Technology of Water Treatment,2019,45(4):37-42.
|
45 |
黄博,郭朝晖,肖细元,等. 铝代水铁矿协同吸附砷镉的机制[J]. 环境科学,2019,40(5):2287-2294.
|
|
HUANG Bo, GUO Zhaohui, XIAO Xiyuan,et al. Mechanism of synergistic adsorption of arsenic and cadmium by aluminiumsubstituted ferrihydrites[J]. Environmental Science,2019,40(5):2287-2294.
|
46 |
胡燕玲. 核壳型稀土掺杂氧化锆的制备及其砷吸附性能研究[D]. 徐州:中国矿业大学,2019.
|
|
HU Yanling. Preparation of core-shell rare earth doped zirconia and its arsenic adsorption properties[D]. Xuzhou:China University of Mining and Technology,2019.
|
47 |
冯静. 给水厂污泥制备纳米铁铝材料及其对饮用水中氟和砷吸附性能研究[D]. 天津:天津大学,2019. doi:10.1016/j.gsd.2020.100456
|
|
FENG Jing. Study on preparation of sludge-based iron-aluminum nanomaterials and its removal of fluoride and arsenic from drinking water[D]. Tianjin:Tianjin University,2019. doi:10.1016/j.gsd.2020.100456
|
48 |
PERVEZ M N, WEI Y, SUN P,et al. α-FeOOH quantum dots impregnated graphene oxide hybrids enhanced arsenic adsorption:The mediation role of environmental organic ligands[J]. Science of The Total Environment,2021,781:146726. doi:10.1016/j.scitotenv.2021.146726
|
49 |
ISLAM A, TEO S H, AHMED M T,et al. Novel micro-structured carbon-based adsorbents for notorious arsenic removal from wastewater[J]. Chemosphere,2021,272:129653. doi:10.1016/j.chemosphere.2021.129653
|
50 |
曹秉帝,徐绪筝,王东升,等. 三价铁改性活性炭对水中微量砷的吸附特性[J]. 环境工程学报,2016,10(5):2321-2328. doi:10.12030/j.cjee.201412168
|
|
CAO Bingdi, XU Xuzheng, WANG Dongsheng,et al. Adsorption properties of lowconcentration arsenic in water by modified activated carbon withferriciron[J]. Chinese Journal of Environmental Engineering,2016,10(5):2321-2328. doi:10.12030/j.cjee.201412168
|
51 |
王放,赵洪兴,肖燕飞,等. CO3 2-型TOMAC自碱性溶液中萃取硫代亚砷酸[J]. 有色金属科学与工程,2016,7(2):14-18.
|
|
WANG Fang, ZHAO Hongxing, XIAO Yanfei,et al. Solvent extraction of thioarsenite by CO3 2- type TOMAC in alkaline solutions[J]. Nonferrous Metals Science and Engineering,2016,7(2):14-18.
|
52 |
王瑞永,罗婷. TBP-N235协同萃取铜电解液中的砷[J]. 矿冶工程,2015,35(6):89-92.
|
|
WANG Ruiyong, LUO Ting. Synergistic extraction of asfrom copper electrolyte with TBP and N235 [J]. Mining and Metallurgical Engineering,2015,35(6):89-92.
|
53 |
王瑞永. C923萃取铜电解液中砷和铋的试验研究[J]. 黄金科学技术,2015,23(1):90-94. doi:10.11872/j.issn.1005-2518.2015.01.090
|
|
WANG Ruiyong. Experimental investigation of using C923 to extract arsenic and bismuth in copper electrolyte[J]. Gold Science and Technology,2015,23(1):90-94. doi:10.11872/j.issn.1005-2518.2015.01.090
|
54 |
彭福全,熊正为,王志勇. 离子交换法除砷实验研究[J]. 湖南科技学院学报,2010,31(4):94-96. doi:10.3969/j.issn.1673-2219.2010.04.027
|
|
PENG Fuquan, XIONG Zhengwei, WANG Zhiyong. Experimental study on arsenic removal by ion exchange[J]. Journal of Hunan University of Science and Engineering,2010,31(4):94-96. doi:10.3969/j.issn.1673-2219.2010.04.027
|
55 |
KARAKURT S. Removal of carcinogenic arsenic from drinking water by the application of ion exchange resins[J]. Oncogen Journal,2019,2(1):5. doi:10.35702/onc.10005
|
56 |
刘振中,邓慧萍,韩瑛,等. 离子交换纤维除As(Ⅴ)性能研究[J]. 工业水处理,2009,29(8):62-66. doi:10.11894/1005-829x.2009.29(8).62
|
|
LIU Zhenzhong, DENG Huiping, HAN Ying,et al. Research on As(Ⅴ) removal performance of ion exchange fiber[J]. Industrial Water Treatment,2009,29(8):62-66. doi:10.11894/1005-829x.2009.29(8).62
|
57 |
ÇERMIKLI E, ŞEN F, ALTıOK E,et al. Performances of novel chelating ion exchange resins for boron and arsenic removal from saline geothermal water using adsorption-membrane filtration hybrid process[J]. Desalination,2020,491:114504. doi:10.1016/j.desal.2020.114504
|
58 |
SÁNCHEZ J, RIVAS B L, ÖZGÖZ S,et al. Ultrafiltration assisted by water-soluble poly(diallyl dimethyl ammonium chloride) for As(Ⅴ) removal[J]. Polymer Bulletin,2016,73(1):241-254. doi:10.1007/s00289-015-1483-4
|
59 |
VÍCTOR-ORTEGA M D, RATNAWEERA H C. Double filtration as an effective system for removal of arsenate and arsenite from drinking water through reverse osmosis[J]. Process Safety and Environmental Protection,2017,111:399-408. doi:10.1016/j.psep.2017.08.001
|
60 |
AHMED S,RASULMG,HASIBMA,et al. Performance of nanofiltration membrane in a vibrating module(VSEP-NF) for arsenic removal[J]. Desalination,2010,252(1/2/3):127-134. doi:10.1016/j.desal.2009.10.013
|
61 |
ZHANG Xuan, FANG Xiaofeng, LI Jiansheng,et al. Developing new adsorptive membrane by modification of support layer with iron oxide microspheres for arsenic removal[J]. Journal of Colloid and Interface Science,2018,514:760-768. doi:10.1016/j.jcis.2018.01.002
|
62 |
MAZUMDER P, SHARMA S K, TAKI K,et al. Microbes involved in arsenic mobilization and respiration:a review on isolation,identification,isolates and implications[J]. Environmental geochemistry and health,2020,42(10):3443-3469. doi:10.1007/s10653-020-00549-8
|
63 |
JAVANBAKHT V, ALAVI S A, ZILOUEI H. Mechanisms of heavy metal removal using microorganisms as biosorbent[J]. Water Science and Technology,2014,69(9):1775-1787. doi:10.2166/wst.2013.718
|
64 |
修伟. 耐砷铁氧化菌的除砷特征及其机理研究[D]. 北京:中国地质大学,2016.
|
|
XIU Wei. Characteristics and mechanisms of arsenic bioremediation by arsenic-resistant Fe(Ⅱ)-oxidizing bacteria in aqueous environment[D]. Beijing:China University of Geosciences,2016.
|
65 |
方芳,钟宏,江放明,等. 嗜酸氧化亚铁硫杆菌的耐砷驯化与浸矿能力[J]. 中南大学学报(自然科学版),2013,44(10):3977-3983. doi:10.1007/s11771-014-2384-7
|
|
FANG Fang, ZHONG Hong, JIANG Fangming,et al. Domestication for arsenic-tolerant ability and bioleaching of Acidithiobacillus ferrooxidans[J]. Journal of Central South University:Science and Technology,2013,44(10):3977-3983. doi:10.1007/s11771-014-2384-7
|
66 |
BRIONES-GALLARDO R, ESCOT-ESPINOZA V M, CERVANTES-GONZÁLEZ E. Removing arsenic and hydrogen sulfide production using arsenic-tolerant sulfate-reducing bacteria[J]. International Journal of Environmental Science and Technology,2017,14(3):609-622. doi:10.1007/s13762-016-1174-1
|
67 |
ZACARÍAS-ESTRADA O L, BALLINAS-CASARRUBIAS L, MONTERO-CABRERA M E,et al. Arsenic removal and activity of a sulfate reducing bacteria-enriched anaerobic sludge using zero valent iron as electron donor[J]. Journal of Hazardous Materials,2020,384:121392. doi:10.1016/j.jhazmat.2019.121392
|
68 |
BANERJEE A, SARKAR P, BANERJEE S. Application of statistical design of experiments for optimization of As(Ⅴ) biosorption by immobilized bacterial biomass[J]. Ecological Engineering,2016,86:13-23. doi:10.1016/j.ecoleng.2015.10.015
|
69 |
VILLADANGOS A F, ORDONEZ E, PEDRE B,et al. Engineered coryneform bacteria as a bio-tool for arsenic remediation[J]. Applied microbiology and biotechnology,2014,98(24):10143-10152. doi:10.1007/s00253-014-6055-2
|
70 |
ELSANHOTY R M, AL-URKI I A, RAMADAN M F. Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water[J]. Water Science and technology,2016,74(3):625-638. doi:10.2166/wst.2016.255
|