1 |
GUVEN H, ERSAHIN M E, OZGUN H,et al. Energy and material refineries of future:Wastewater treatment plants[J]. Journal of Environmental Management, 2023, 329:117130. doi: 10.1016/j.jenvman.2022.117130
|
2 |
JONES E R, VAN VLIET M T H, QADIR M,et al. Country-level and gridded estimates of wastewater production,collection,treatment and reuse[J]. Earth System Science Data, 2021, 13(2):237-254. doi: 10.5194/essd-13-237-2021
|
3 |
DAI Hongliang, SUN Yang, WAN Dong,et al. Simultaneous denitrification and phosphorus removal:A review on the functional strains and activated sludge processes[J]. Science of the Total Environment, 2022, 835:155409. doi: 10.1016/j.scitotenv.2022.155409
|
4 |
CHEN Hong, LIU Ke, YANG Enzhe,et al. A critical review on microbial ecology in the novel biological nitrogen removal process:Dynamic balance of complex functional microbes for nitrogen removal[J]. Science of the Total Environment, 2023, 857(Pt 2):159462. doi: 10.1016/j.scitotenv.2022.159462
|
5 |
LI Siqi, GUO Yu, ZHANG Xuan,et al. Advanced nitrogen and phosphorus removal by the symbiosis of PAOs,DPAOs and DGAOs in a pilot-scale A 2O/A+MBR process with a low C/N ratio of influent[J]. Water Research, 2023, 229:119459. doi: 10.1016/j.watres.2022.119459
|
6 |
SU Zicheng, LIU Tao, GUO Jianhua,et al. Nitrite oxidation in wastewater treatment:Microbial adaptation and suppression challenges[J]. Environmental Science & Technology, 2023, 57(34):12557-12570. doi: 10.1021/acs.est.3c00636
|
7 |
蒙小俊. 城镇污水处理厂升级改造分析[J]. 环境污染与防治,2021,43(11):1439-1445.
|
|
MENG Xiaojun. Analysis of upgrading and reconstruction of urban sewage treatment plants[J]. Environmental Pollution & Control,2021,43(11):1439-1445.
|
8 |
WANG Kun, ZHOU Chuanting, ZHOU Hua,et al. Comparison on biological nutrient removal and microbial community between full-scale anaerobic/anoxic/aerobic process and its upgrading processes[J]. Bioresource Technology, 2023, 374:128757. doi: 10.1016/j.biortech.2023.128757
|
9 |
REGMI P, STURM B, HIRIPITIYAGE D,et al. Combining continuous flow aerobic granulation using an external selector and carbon-efficient nutrient removal with AvN control in a full-scale simultaneous nitrification-denitrification process[J]. Water Research, 2022, 210:117991. doi: 10.1016/j.watres.2021.117991
|
10 |
SABBA F, REDMOND E, RUFF C,et al. Exploring community and kinetic shifts in nitrifying microbial communities in low dissolved oxygen activated sludge facilities for energy-efficient biological nitrogen removal[J]. ACS ES&T Water, 2024, 4(2):707-718. doi: 10.1021/acsestwater.3c00715
|
11 |
ZHANG Tong, SHAO Mingfei, YE Lin. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. The ISME Journal, 2012, 6(6):1137-1147. doi: 10.1038/ismej.2011.188
|
12 |
KIM Y M, CHON D H, KIM H S,et al. Investigation of bacterial community in activated sludge with an anaerobic side-stream reactor(ASSR) to decrease the generation of excess sludge[J]. Water Research, 2012, 46(13):4292-4300. doi: 10.1016/j.watres.2012.04.040
|
13 |
LOCEY K J, LENNON J T. Scaling laws predict global microbial diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(21):5970-5975. doi: 10.1073/pnas.1521291113
|
14 |
WU Linwei, NING Daliang, ZHANG Bing,et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants[J]. Nature Microbiology,2019,4:1183-1195.
|
15 |
ZHENG Jinli, HUANG Xin, GAO Linjun,et al. Deciphering the core bacterial community structure and function and their response to environmental factors in activated sludge from pharmaceutical wastewater treatment plants[J]. Environmental Pollution, 2024, 346:123635. doi: 10.1016/j.envpol.2024.123635
|
16 |
HIRAISHI A, UEDA Y, ISHIHARA J. Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal[J]. Applied and Environmental Microbiology, 1998, 64(3):992-998. doi: 10.1128/aem.64.3.992-998.1998
|
17 |
WAN Chunli, ZHANG Qinlan, LEE D J,et al. Long-term storage of aerobic granules in liquid media:Viable but non-culturable status[J]. Bioresource Technology, 2014, 166:464-470. doi: 10.1016/j.biortech.2014.05.091
|
18 |
SHU Duntao, HE Yanling, YUE Hong,et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technology, 2015, 186:163-172. doi: 10.1016/j.biortech.2015.03.072
|
19 |
ZHANG Jinsen, LIU Guohua, WEI Qi,et al. Regional discrepancy of microbial community structure in activated sludge system from Chinese WWTPs based on high-throughput 16S rDNA sequencing[J]. Science of the Total Environment, 2022, 818:151751. doi: 10.1016/j.scitotenv.2021.151751
|
20 |
TIAN Lu, WANG Lin. A meta-analysis of microbial community structures and associated metabolic potential of municipal wastewater treatment plants in global scope[J]. Environmental Pollution, 2020, 263:114598. doi: 10.1016/j.envpol.2020.114598
|
21 |
MAO Yanping, GRAHAM D W, TAMAKI H,et al. Dominant and novel clades of Candidatus Accumulibacter phosphatis in 18 globally distributed full-scale wastewater treatment plants[J]. Scientific Reports, 2015, 5:11857. doi: 10.1038/srep11857
|
22 |
高晨晨,郑兴灿,游佳,等. 城市污水脱氮除磷系统的活性污泥菌群结构特征[J]. 中国给水排水,2015,31(23):37-42.
|
|
GAO Chenchen, ZHENG Xingcan, YOU Jia,et al. Structure characteristics of activated sludge microbial communities in nitrogen and phosphorus removal system of municipal wastewater[J]. China Water & Wastewater,2015,31(23):37-42.
|
23 |
唐霞,黄福,李碧清,等. 华南地区不同污水处理工艺中硝化菌和反硝化菌的群落结构特征与差异[J]. 给水排水,2023,49(10):44-52.
|
|
TANG Xia, HUANG Fu, LI Biqing,et al. Community structure and differences of nitrifying and denitrifying bacteria in municipal wastewater treatments employing different treatment processes in South China[J]. Water & Wastewater Engineering,2023,49(10):44-52.
|
24 |
YANG Yongkui, WANG Longfei, XIANG Feng,et al. Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones[J]. International Journal of Environmental Research and Public Health, 2020, 17(2):436. doi: 10.3390/ijerph17020436
|
25 |
LIU Hongyuan, ZHU Liying, TIAN Xiaohe,et al. Seasonal variation of bacterial community in biological aerated filter for ammonia removal in drinking water treatment[J]. Water Research, 2017, 123:668-677. doi: 10.1016/j.watres.2017.07.018
|
26 |
JOHNSTON J, LAPARA T, BEHRENS S. Composition and dynamics of the activated sludge microbiome during seasonal nitrification failure[J]. Scientific Reports, 2019, 9:4565. doi: 10.1038/s41598-019-40872-4
|
27 |
MENG Xiaojun, HUANG Zhigui, GE Guanghuan. Upgrade and reconstruction of biological processes in municipal wastewater treatment plants[J]. Desalination and Water Treatment, 2024, 317:100299. doi: 10.1016/j.dwt.2024.100299
|
28 |
ZHAO Weihua, BI Xuejun, BAI Meng,et al. Research advances of ammonia oxidation microorganisms in wastewater:Metabolic characteristics,microbial community,influencing factors and process applications[J]. Bioprocess and Biosystems Engineering, 2023, 46(5):621-633. doi: 10.1007/s00449-023-02866-5
|
29 |
ZHAO Weihua, BI Xuejun, PENG Yongzhen,et al. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera:Metabolic mechanisms,applications and influencing factors[J]. Chemosphere, 2022, 307(Pt 1):135675. doi: 10.1016/j.chemosphere.2022.135675
|
30 |
ZHANG Junya, WANG Yuanyue, YU Dawei,et al. Who contributes more to N 2O emission during sludge bio-drying with two different aeration strategies,nitrifiers or denitrifiers?[J]. Applied Microbiology and Biotechnology, 2017, 101(8):3393-3404. doi: 10.1007/s00253-016-8018-2
|
31 |
ZHANG Tong, YE Lin, TONG A H Y,et al. Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors[J]. Applied Microbiology and Biotechnology, 2011, 91(4):1215-1225. doi: 10.1007/s00253-011-3408-y
|
32 |
PEREZ J, LOTTI T, KLEEREBEZEM R,et al. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study[J]. Water Research, 2014, 66:208-218. doi: 10.1016/j.watres.2014.08.028
|
33 |
SIRIPONG S, RITTMANN B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants[J]. Water Research, 2007, 41(5):1110-1120. doi: 10.1016/j.watres.2006.11.050
|
34 |
COSKUNER G, CURTIS T P. In situ characterization of nitrifiers in an activated sludge plant:Detection of Nitrobacter Spp.[J]. Journal of Applied Microbiology, 2002, 93(3):431-437. doi: 10.1046/j.1365-2672.2002.01715.x
|
35 |
ZHU Zhuo, ZHANG Liyuan, LI Xiyao,et al. Robust nitrogen removal from municipal wastewater by partial nitrification anammox at ultra-low dissolved oxygen in a pure biofilm system[J]. Bioresource Technology, 2023, 369:128453. doi: 10.1016/j.biortech.2022.128453
|
36 |
DAIMS H, LEBEDEVA E V, PJEVAC P,et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509. doi: 10.1038/nature16461
|
37 |
PJEVAC P, SCHAUBERGER C, POGHOSYAN L,et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment[J]. Frontiers in Microbiology, 2017, 8:1508. doi: 10.3389/fmicb.2017.01508
|
38 |
李旭,周鑫,王共磊,等. 全程氨氧化菌(Comammox)在污水生物脱氮中的应用进展[J]. 中国给水排水,2023,39(22):46-54.
|
|
LI Xu, ZHOU Xin, WANG Gonglei,et al. Advances in the application of Comammox in biological nitrogen removal from waste water[J]. China Water & Wastewater,2023,39(22):46-54.
|
39 |
刘兰,明语真,吕爱萍,等. 厌氧氨氧化细菌的研究进展[J]. 微生物学报,2021,61(4):969-986.
|
|
LIU Lan, MING Yuzhen, Aiping LÜ,et al. Recent advance on the anaerobic ammonium oxidation bacteria[J]. Acta Microbiologica Sinica,2021,61(4):969-986.
|
40 |
蒙小俊,韩勇,黄志贵,等. Anammox用于主流污水处理的挑战与对策[J]. 环境工程,2022,40(10):203-214.
|
|
MENG Xiaojun, HAN Yong, HUANG Zhigui,et al. Challenges and solutions of Anammox in mainstream wastewater treatment plants[J]. Environmental Engineering,2022,40(10):203-214.
|
41 |
ZHAO Weihua, WANG Meixiang, BAI Meng,et al. Nitrogen removal improvement by denitrifying ammonium oxidation in anoxic/oxic-sequence batch biofilm reactor system[J]. Journal of Environmental Chemical Engineering, 2022, 10(1):8. doi: 10.1016/j.jece.2021.107022
|
42 |
CHEN Hong, TU Zhi, WU Sha,et al. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment[J]. Chemosphere, 2021, 278:130436. doi: 10.1016/j.chemosphere.2021.130436
|
43 |
LIU Yingrui, HE Yanying, CHEN Feng,et al. Flocs enhance nitrous oxide reduction capacity in a denitrifying biofilm-based system:Mechanism of electron competition[J]. Chemical Engineering Journal, 2023, 455:140599. doi: 10.1016/j.cej.2022.140599
|
44 |
ALBINA P, DURBAN N, BERTRON A,et al. Influence of hydrogen electron donor,alkaline pH,and high nitrate concentrations on microbial denitrification:A review[J]. International Journal of Molecular Sciences, 2019, 20(20):5163. doi: 10.3390/ijms20205163
|
45 |
IZADI P, SINHA P, ANDALIB M,et al. Coupling fundamental mechanisms and operational controls in mainstream partial denitrification for partial denitrification anammox applications:A review[J]. Journal of Cleaner Production, 2023, 400:136741. doi: 10.1016/j.jclepro.2023.136741
|
46 |
王彤,汪涵,周明达,等. 污水脱氮功能微生物的组学研究进展[J]. 微生物学通报,2021,48(12):4844-4870.
|
|
WANG Tong, WANG Han, ZHOU Mingda,et al. Advances in omics of functional microorganisms for nitrogen removal in wastewater[J]. Microbiology China,2021,48(12):4844-4870.
|
47 |
MA Yuqing, WANG Bo, LI Xiaodi,et al. Enrichment of anammox biomass during mainstream wastewater treatment driven by achievement of partial denitrification through the addition of bio-carriers[J]. Journal of Environmental Sciences, 2024, 137:181-194. doi: 10.1016/j.jes.2023.03.002
|
48 |
PATEL R J, NERURKAR A S. Thauera sp. for efficient nitrate removal in continuous denitrifying moving bed biofilm reactor[J]. Bioprocess and Biosystems Engineering, 2024, 47(3):429-442. doi: 10.1007/s00449-024-02977-7
|
49 |
REN Tong, CHI Yulei, WANG Yu,et al. Diversified metabolism makes novel Thauera strain highly competitive in low carbon wastewater treatment[J]. Water Research, 2021, 206:117742. doi: 10.1016/j.watres.2021.117742
|
50 |
|
|
MAO Yuejian. Study on population structure and function of Thauera,an important functional group in wastewater treatment system[D]. Shanghai:Shanghai Jiaotong University, 2009. doi: 10.1016/j.mimet.2008.06.005
|
51 |
赵逸昳. DNRA过程的环境分布规律及其介导的脱氮体系构建和机理研究[D]. 济南:山东大学,2022.
|
|
ZHAO Yidie. Study on environmental distribution law of DNRA process and its mediated denitrification system construction and mechanism[D]. Ji’nan:Shandong University,2022.
|
52 |
WANG Shanyun, LIU Chunlei, WANG Xiaoxia,et al. Dissimilatory nitrate reduction to ammonium(DNRA) in traditional municipal wastewater treatment plants in China:Widespread but low contribution[J]. Water Research, 2020, 179:115877. doi: 10.1016/j.watres.2020.115877
|
53 |
赵瑞强,周鑫,牛冰心. 废水处理硝酸盐异化还原与厌氧氨氧化/反硝化耦合工艺构建[J]. 化工进展,2024,43(3):1593-1605.
|
|
ZHAO Ruiqiang, ZHOU Xin, NIU Bingxin. Construction of a coupled process integrating dissimilatory nitrate reduction and anaerobic ammonia oxidation/denitrification for wastewater treatment[J]. Chemical Industry and Engineering Progress,2024,43(3):1593-1605.
|
54 |
张涵瑞,朱超,郭中瑞,等. 闭合回路电子流强化硝酸盐异化还原为铵性能及功能菌群分析[J]. 环境科学学报,2023,43(4):217-227.
|
|
ZHANG Hanrui, ZHU Chao, GUO Zhongrui,et al. Performance and functional bacterial community analysis for highly efficient nitrate dissimilatory reduction to ammonium induced by electron flow with closed circuit[J]. Acta Scientiae Circumstantiae,2023,43(4):217-227.
|
55 |
WU Tong, YANG Shanshan, ZHONG Le,et al. Simultaneous nitrification,denitrification and phosphorus removal:What have we done so far and how do we need to do in the future?[J]. Science of the Total Environment, 2023, 856(Pt 1):158977. doi: 10.1016/j.scitotenv.2022.158977
|
56 |
郑少奎,罗焇湝. EBPR工艺污泥中聚磷菌多样性与除磷潜力评价方法[J]. 环境科学研究,2022,35(10):2338-2347.
|
|
ZHENG Shaokui, LUO Xiaojie. PAO phylogenetic diversity in activated sludge and its contribution to phosphorus removal by EBPR process[J]. Research of Environmental Sciences,2022,35(10):2338-2347.
|
57 |
DUEHOLM M K D, NIERYCHLO M, ANDERSEN K S,et al. MiDAS 4:A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants[J]. Nature Communications, 2022, 13:1908. doi: 10.1038/s41467-022-29438-7
|
58 |
RUIZ-HADDAD L,ALI M, PRONK M,et al. Demystifying polyphosphate-accumulating organisms relevant to wastewater treatment:A review of their phylogeny,metabolism,and detection[J]. Environmental Science and Ecotechnology, 2024, 21:100387. doi: 10.1016/j.ese.2024.100387
|
59 |
LI Jianwei, PENG Yongzhen, ZHANG Liang,et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research, 2019, 160:178-187. doi: 10.1016/j.watres.2019.05.070
|
60 |
刘强,王泰,沈浡,等. MBBR工艺用于污水厂提标改造的低温运行效果[J]. 中国给水排水,2020,36(13):7-13.
|
|
LIU Qiang, WANG Tai, SHEN Bo,et al. Operation effect of MBBR applied in upgrading and reconstruction of a wastewater treatment plant in Tianjin at low temperature[J]. China Water & Wastewater,2020,36(13):7-13.
|
61 |
YU Cheng, WANG Kaijun, ZHANG Kaiyuan,et al. Full-scale upgrade activated sludge to continuous-flow aerobic granular sludge:Implementing microaerobic-aerobic configuration with internal separators[J]. Water Research, 2024, 248:120870. doi: 10.1016/j.watres.2023.120870
|
62 |
GILBERT E M, AGRAWAL S, SCHWARTZ T,et al. Comparing different reactor configurations for partial Nitritation/Anammox at low temperatures[J]. Water Research, 2015, 81:92-100. doi: 10.1016/j.watres.2015.05.022
|
63 |
GONZALEZ-MARTINEZ A, SIHVONEN M, MUÑOZ-PALAZON B,et al. Microbial ecology of full-scale wastewater treatment systems in the Polar Arctic Circle:Archaea,bacteria and fungi[J]. Scientific Reports, 2018, 8:2208. doi: 10.1038/s41598-018-20633-5
|
64 |
CUI Bin, ZHANG Chongjun, FU Liang,et al. Current status of municipal wastewater treatment plants in North-east China:Implications for reforming and upgrading[J]. Frontiers of Environmental Science & Engineering, 2022, 17(6):73. doi: 10.1007/s11783-023-1673-5
|
65 |
彭永臻,王鸣岐,彭轶,等. 四种碳源条件下城市污水处理厂尾水深度脱氮的性能与微生物种群结构[J]. 北京工业大学学报,2021,47(10):1158-1166.
|
|
PENG Yongzhen, WANG Mingqi, PENG Yi,et al. Effect of four different types of carbon sources on advanced nitrogen removal of secondary effluent:System performance and microbial communities[J]. Journal of Beijing University of Technology,2021,47(10):1158-1166.
|
66 |
王俊杰,杨津津,常根旺,等. 纳米铁改性生物炭载体强化厌氧氨氧化菌富集与脱氮效果研究[J]. 环境科学研究,2024,37(4):812-821.
|
|
WANG Junjie, YANG Jinjin, CHANG Genwang,et al. Research on nano-iron modified biochar carrier to enhance enrichment and denitrification effect of anaerobic ammonia oxidizing bacteria[J]. Research of Environmental Sciences,2024,37(4):812-821.
|
67 |
CHU Zhaorui, HUANG Dandan, HUANG Xiaoyu,et al. Achieving robust mainstream nitritation by implementing light irradiation:Long-term performance and microbial dynamics[J]. Bioresource Technology, 2023, 369:128284. doi: 10.1016/j.biortech.2022.128284
|
68 |
WANG Hui, WANG Yubo, ZHANG Guoqing,et al. Temporal dynamics and performance association of the Tetrasphaera-enriched microbiome for enhanced biological phosphorus removal[J]. Engineering, 2023, 29:168-178. doi: 10.1016/j.eng.2022.10.016
|