| [1] |
GEBRESLASSIE G, DESTA H G, DONG Yingchao,et al. Advanced membrane-based high-value metal recovery from wastewater[J]. Water Research, 2024, 265:122122. doi: 10.1016/j.watres.2024.122122
|
| [2] |
KATO S, KANSHA Y. Comprehensive review of industrial wastewater treatment techniques[J]. Environmental Science and Pollution Research, 2024, 31(39):51064-51097. doi: 10.1007/s11356-024-34584-0
|
| [3] |
ROCHA J M, SOUSA R P C L, FANGUEIRO R,et al. The potential of electrospun membranes in the treatment of textile wastewater:A review[J]. Polymers, 2024, 16(6):801. doi: 10.3390/polym16060801
|
| [4] |
ABURABIE J, MOHAMMED S, KUMARAN A,et al. From waste to wealth:Chelating polymeric membranes for precious palladium recovery from wastewater[J]. Journal of Materials Chemistry A, 2023, 11(42):22845-22858. doi: 10.1039/d3ta04931k
|
| [5] |
AHMED M, MAVUKKANDY M O, GIWA A,et al. Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy[J]. NPJ Clean Water, 2022, 5:12. doi: 10.1038/s41545-022-00154-5
|
| [6] |
BHARATH G,HAI A, RAMBABU K,et al. Sustainable electrochemical process for recovery of metal ions in synthetic mining wastewater and their utilization in photocathodic CO 2 reduction into formic acid[J]. Resources,Conservation and Recycling, 2023, 190:106778. doi: 10.1016/j.resconrec.2022.106778
|
| [7] |
TOCZYŁOWSKA-MAMIŃSKA R. Limits and perspectives of pulp and paper industry wastewater treatment:A review[J]. Renewable and Sustainable Energy Reviews, 2017, 78:764-772. doi: 10.1016/j.rser.2017.05.021
|
| [8] |
胡剑泉,段梦强,高源,等. 高铁粉煤灰强化厌氧生物法处理造纸废水[J]. 工业水处理,2022,42(8):73-77.
|
|
HU Jianquan, DUAN Mengqiang, GAO Yuan,et al. Enhanced anaerobic biological treatment of paper wastewater with high iron fly ash[J]. Industrial Water Treatment,2022,42(8):73-77.
|
| [9] |
SHARMA P, KAUR H, SHARMA M,et al. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste[J]. Environmental Monitoring and Assessment, 2011, 183(1/2/3/4):151-195. doi: 10.1007/s10661-011-1914-0
|
| [10] |
杨庆,王铸,许欣宇,等. 基于MMI技术对印染废水中NP降解关键功能菌群的识别、构建与评估[J]. 工业水处理,2023,43(11):15-26.
|
|
YANG Qing, WANG Zhu, XU Xinyu,et al. Identification,construction and evaluation of key functional flora for NP degradation in printing and dyeing wastewater based on MMI technology[J]. Industrial Water Treatment,2023,43(11):15-26.
|
| [11] |
KLAVARIOTI M, MANTZAVINOS D, KASSINOS D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes[J]. Environment International, 2009, 35(2):402-417. doi: 10.1016/j.envint.2008.07.009
|
| [12] |
TAKHT RAVANCHI M, KAGHAZCHI T, KARGARI A. Application of membrane separation processes in petrochemical industry:A review[J]. Desalination, 2009, 235(1/2/3):199-244. doi: 10.1016/j.desal.2007.10.042
|
| [13] |
ARANA JUVE J M, CHRISTENSEN F M S, WANG Yong,et al. Electrodialysis for metal removal and recovery:A review[J]. Chemical Engineering Journal, 2022, 435:134857. doi: 10.1016/j.cej.2022.134857
|
| [14] |
YAO Jiaqi, SUN Yue, SHI Peixin,et al. Phosphorous acid separation and recovery from glyphosate mother liquor by two-stage bipolar membrane electrodialysis[J]. Separation and Purification Technology, 2024, 341:126700. doi: 10.1016/j.seppur.2024.126700
|
| [15] |
HÁBOVÁ V, MELZOCH K, RYCHTERA M. Modern method of lactic acid recovery from fermentation broth[J]. Czech Journal of Food Sciences, 2004, 22(3):87-94. doi: 10.17221/3411-cjfs
|
| [16] |
BABILAS D, DYDO P, JAKÓBIK-KOLON A,et al. The effectiveness of nickel recovery from spent electroplating baths by electrodialysis[J]. Desalination and Water Treatment, 2017, 64:233-236. doi: 10.5004/dwt.2017.11417
|
| [17] |
NEMATI M, HOSSEINI S M, SHABANIAN M. Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid;heavy metal ions removal[J]. Journal of Hazardous Materials, 2017, 337:90-104. doi: 10.1016/j.jhazmat.2017.04.074
|
| [18] |
HOSSEINI S M, ALIBAKHSHI H, JASHNI E,et al. A novel layer-by-layer heterogeneous cation exchange membrane for heavy metal ions removal from water[J]. Journal of Hazardous Materials, 2020, 381:120884. doi: 10.1016/j.jhazmat.2019.120884
|
| [19] |
BARROS K S, ESPINOSA D C R. Chronopotentiometry of an anion-exchange membrane for treating a synthesized free-cyanide effluent from brass electrodeposition with EDTA as chelating agent[J]. Separation and Purification Technology, 2018, 201:244-255. doi: 10.1016/j.seppur.2018.03.013
|
| [20] |
SCARAZZATO T, PANOSSIAN Z, TENÓRIO J A S,et al. A review of cleaner production in electroplating industries using electrodialysis[J]. Journal of Cleaner Production, 2017, 168:1590-1602. doi: 10.1016/j.jclepro.2017.03.152
|
| [21] |
ITOI S, NAKAMURA I, KAWAHARA T. Electrodialytic recovery process of metal finishing waste water[J]. Desalination, 1980, 32:383-389. doi: 10.1016/s0011-9164(00)86038-5
|
| [22] |
BENVENUTI T, KRAPF R S, RODRIGUES M A S,et al. Recovery of nickel and water from nickel electroplating wastewater by electrodialysis[J]. Separation and Purification Technology, 2014, 129:106-112. doi: 10.1016/j.seppur.2014.04.002
|
| [23] |
NATARAJ S K, HOSAMANI K M, AMINABHAVI T M. Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal[J]. Desalination, 2007, 217(1/2/3):181-190. doi: 10.1016/j.desal.2007.02.012
|
| [24] |
HAKIM A N, KHOIRUDDIN K, ARIONO D,et al. Ionic separation in electrodeionization system:Mass transfer mechanism and factor affecting separation performance[J]. Separation & Purification Reviews, 2020, 49(4):294-316. doi: 10.1080/15422119.2019.1608562
|
| [25] |
WOOD J, GIFFORD J, ARBA J,et al. Production of ultrapure water by continuous electrodeionization[J]. Desalination, 2010, 250(3):973-976. doi: 10.1016/j.desal.2009.09.084
|
| [26] |
PENG Changsheng, JIN Ruijie, LI Guangyu,et al. Recovery of nickel and water from wastewater with electrochemical combination process[J]. Separation and Purification Technology, 2014, 136:42-49. doi: 10.1016/j.seppur.2014.08.025
|
| [27] |
ALVARADO L, TORRES I R, CHEN Aicheng. Integration of ion exchange and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater[J]. Separation and Purification Technology, 2013, 105:55-62. doi: 10.1016/j.seppur.2012.12.007
|
| [28] |
MAREEV S A, EVDOCHENKO E, WESSLING M,et al. A comprehensive mathematical model of water splitting in bipolar membranes:Impact of the spatial distribution of fixed charges and catalyst at bipolar junction[J]. Journal of Membrane Science, 2020, 603:118010. doi: 10.1016/j.memsci.2020.118010
|
| [29] |
DEGHLES A, KURT U. Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process[J]. Chemical Engineering and Processing:Process Intensification, 2016, 104:43-50. doi: 10.1016/j.cep.2016.02.009
|
| [30] |
MIN K J, CHOI S Y, JANG D,et al. Separation of metals from electroplating wastewater using electrodialysis[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects, 2019, 41(20):2471-2480. doi: 10.1080/15567036.2019.1568629
|
| [31] |
BABILAS D, DYDO P. Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex formation[J]. Separation and Purification Technology, 2018, 192:419-428. doi: 10.1016/j.seppur.2017.10.013
|
| [32] |
MCGOVERN R K, WEINER A M, SUN Lige,et al. On the cost of electrodialysis for the desalination of high salinity feeds[J]. Applied Energy, 2014, 136:649-661. doi: 10.1016/j.apenergy.2014.09.050
|
| [33] |
SIRIVEDHIN T, MCCUE J, DALLBAUMAN L. Reclaiming produced water for beneficial use:Salt removal by electrodialysis[J]. Journal of Membrane Science, 2004, 243(1/2):335-343. doi: 10.1016/j.memsci.2004.06.038
|
| [34] |
|
| [35] |
TUREK M, LASKOWSKA E, MITKO K,et al. Application of nanofiltration and electrodialysis for improved performance of a salt production plant[J]. Desalination and Water Treatment, 2017, 64:244-250. doi: 10.5004/dwt.2017.11392
|
| [36] |
BUZZI D C, VIEGAS L S, RODRIGUES M A S,et al. Water recovery from acid mine drainage by electrodialysis[J]. Minerals Engineering, 2013, 40:82-89. doi: 10.1016/j.mineng.2012.08.005
|
| [37] |
HAYES T D, SEVERIN B F. Electrodialysis of highly concentrated brines:Effects of calcium[J]. Separation and Purification Technology, 2017, 175:443-453. doi: 10.1016/j.seppur.2016.10.035
|
| [38] |
SEVERIN B F, HAYES T D. Electrodialysis of concentrated brines:Effects of multivalent cations[J]. Separation and Purification Technology, 2019, 218:227-241. doi: 10.1016/j.seppur.2019.02.039
|
| [39] |
YUZER B, AYDIN M I, HASANÇEBI B,et al. Application of an electrodialysis process to recover nitric acid from aluminum finishing industry waste[J]. Desalination and Water Treatment, 2019, 172:199-205. doi: 10.5004/dwt.2019.24914
|
| [40] |
LIU Yaoxing, KE Xiong, ZHU Hanquan,et al. Treatment of raffinate generated via copper ore hydrometallurgical processing using a bipolar membrane electrodialysis system[J]. Chemical Engineering Journal, 2020, 382:122956. doi: 10.1016/j.cej.2019.122956
|
| [41] |
ZHANG Xu, LI Chuanrun, WANG Xiaolin,et al. Recovery of hydrochloric acid from simulated chemosynthesis aluminum foils wastewater:An integration of diffusion dialysis and conventional electrodialysis[J]. Journal of Membrane Science, 2012, 409:257-263. doi: 10.1016/j.memsci.2012.03.062
|
| [42] |
ZHUANG Jinxia, CHEN Qing, WANG Shun,et al. Zero discharge process for foil industry waste acid reclamation:Coupling of diffusion dialysis and electrodialysis with bipolar membranes[J]. Journal of Membrane Science, 2013, 432:90-96. doi: 10.1016/j.memsci.2013.01.016
|
| [43] |
WEI Yanxin, LI Chuanrun, WANG Yaoming,et al. Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis(BMED)[J]. Separation and Purification Technology, 2012, 86:49-54. doi: 10.1016/j.seppur.2011.10.019
|
| [44] |
WANG Qian, YANG Pengbo, CONG Wei. Cation-exchange membrane fouling and cleaning in bipolar membrane electrodialysis of industrial glutamate production wastewater[J]. Separation and Purification Technology, 2011, 79(1):103-113. doi: 10.1016/j.seppur.2011.03.024
|
| [45] |
REIG M, VALDERRAMA C, GIBERT O,et al. Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment:Monovalent-divalent ions separation and acid and base production[J]. Desalination, 2016, 399:88-95. doi: 10.1016/j.desal.2016.08.010
|
| [46] |
ZHANG Yang, PAEPEN S, PINOY L,et al. Selectrodialysis:Fractionation of divalent ions from monovalent ions in a novel electrodialysis stack[J]. Separation and Purification Technology, 2012, 88:191-201. doi: 10.1016/j.seppur.2011.12.017
|
| [47] |
ZHU Ming, CHI Yongzhi, ZHOU Weifeng,et al. Recovery of ammonia nitrogen from simulated reject water by bipolar membrane electrodialysis[J]. Environmental Technology, 2025, 46(8):1147-1159. doi: 10.1080/09593330.2024.2377795
|
| [48] |
DAI Zhinan, CHEN Cong, LI Yifan,et al. Hybrid Donnan dialysis-electrodialysis for efficient ammonia recovery from anaerobic digester effluent[J]. Environmental Science and Ecotechnology, 2023, 15:100255. doi: 10.1016/j.ese.2023.100255
|
| [49] |
LIU Jie, XU Fan, YUAN Junsheng,et al. High-value conversion of Na 2SO 4 wastewater by a continuous electrodialytic metathesis process:Effects of coexisting ions[J]. Journal of Membrane Science, 2020, 615:118584. doi: 10.1016/j.memsci.2020.118584
|
| [50] |
LIM J, KIM M, KWAK R. Zinc-iodine redox reaction enables direct brine valorization with efficient high-water-recovery desalination[J]. Nature Water, 2024, 2(5):475-484. doi: 10.1038/s44221-024-00238-1
|
| [51] |
CASSARO C, VIRRUSO G, CULCASI A,et al. Electrodialysis with bipolar membranes for the sustainable production of chemicals from seawater brines at pilot plant scale[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(7):2989-3000. doi: 10.1021/acssuschemeng.2c06636
|
| [52] |
PROSKYNITOPOULOU V, GARAGOUNIS I, VOURROS A,et al. Nutrient recovery from digestate:Pilot test experiments[J]. Journal of Environmental Management, 2024, 353:120166. doi: 10.1016/j.jenvman.2024.120166
|
| [53] |
HE Wei, LE HENAFF A C, AMROSE S,et al. Flexible batch electrodialysis for low-cost solar-powered brackish water desalination[J]. Nature Water, 2024, 2(4):370-379. doi: 10.1038/s44221-024-00213-w
|
| [54] |
BENALLA S, BACHIRI B, TOUIR J,et al. Feasibility of electrodialysis in heavy metals removal from brassware wastewaters[J]. Desalination and Water Treatment, 2021, 240:106-114. doi: 10.5004/dwt.2021.27721
|
| [55] |
TAHAIKT M, ACHARY I, MENKOUCHI SAHLI M A,et al. Defluoridation of Moroccan groundwater by electrodialysis:Continuous operation[J]. Desalination, 2006, 189(1/2/3):215-220. doi: 10.1016/j.desal.2005.06.027
|
| [56] |
VOUTETAKI A, PLAKAS K V, PAPADOPOULOS A I,et al. Pilot-scale separation of lead and sulfate ions from aqueous solutions using electrodialysis:Application and parameter optimization for the battery industry[J]. Journal of Cleaner Production, 2023, 410:137200. doi: 10.1016/j.jclepro.2023.137200
|
| [57] |
FRENZEL I, HOLDIK H, STAMATIALIS D F,et al. Chromic acid recovery by electro-electrodialysis[J]. Separation and Purification Technology, 2005, 47(1/2):27-35. doi: 10.1016/j.seppur.2005.06.002
|
| [58] |
CHINELLO D, DE SMET L C P M, POST J. Selective electrodialysis:Targeting nitrate over chloride using PVDF-based AEMs[J]. Separation and Purification Technology, 2024, 342:126885. doi: 10.1016/j.seppur.2024.126885
|
| [59] |
BARROS L B M, ANDRADE L H, DREWES J E,et al. Investigation of electrodialysis configurations for vinasse desalting and potassium recovery[J]. Separation and Purification Technology, 2019, 229:115797. doi: 10.1016/j.seppur.2019.115797
|
| [60] |
LI Fuqin, GUO Yanfu, WANG Shaozhou. Pilot-scale selective electrodialysis for the separation of chloride and sulphate from high-salinity wastewater[J]. Membranes, 2022, 12(6):610. doi: 10.3390/membranes12060610
|
| [61] |
SPOOR P B, GRABOVSKA L, KOENE L,et al. Pilot scale deionisation of a galvanic nickel solution using a hybrid ion-exchange/electrodialysis system[J]. Chemical Engineering Journal, 2002, 89(1/2/3):193-202. doi: 10.1016/s1385-8947(02)00009-8
|
| [62] |
GURRERI L, TAMBURINI A, CIPOLLINA A,et al. Electrodialysis applications in wastewater treatment for environmental protection and resources recovery:A systematic review on progress and perspectives[J]. Membranes, 2020, 10(7):146. doi: 10.3390/membranes10070146
|
| [63] |
NATARAJ S K, SRIDHAR S, SHAIKHA I N,et al. Membrane-based microfiltration/electrodialysis hybrid process for the treatment of paper industry wastewater[J]. Separation and Purification Technology, 2007, 57(1):185-192. doi: 10.1016/j.seppur.2007.03.014
|
| [64] |
陈文婷,陈雪,李向南,等. 频繁倒极电渗析处理电厂循环冷却水中试研究[J]. 环保科技,2018,24(6):8-11.
|
|
CHEN Wenting, CHEN Xue, LI Xiangnan,et al. Treatment of recirculating cooling water in power plant using frequent reverse electrodialysis[J]. Environmental Protection and Technology,2018,24(6):8-11.
|
| [65] |
SETODEH M, OSFOURI S, ABBASI M,et al. Experimental analysis of hybrid electrodialysis(ED)-reverse electrodialysis(RED) process for the desalination of brackish waters and generation of renewable energy in a pilot scale[J]. Desalination and Water Treatment, 2021, 231:101-112. doi: 10.5004/dwt.2021.27481
|
| [66] |
GONZALEZ-VOGEL A, MOLTEDO J J, REYES R Q,et al. High frequency pulsed electrodialysis of acidic filtrate in kraft pulping[J]. Journal of Environmental Management, 2021, 282:111891. doi: 10.1016/j.jenvman.2020.111891
|
| [67] |
PENG Zheng, WANG Hongping, CHENG Yanyan,et al. Treatment of carbocysteine wastewater by bipolar membrane electrodialysis:From lab-to pilot-scale[J]. Journal of Membrane Science, 2023, 687:122056. doi: 10.1016/j.memsci.2023.122056
|
| [68] |
PELLEGRINO A, CAMPISI G, PROIETTO F,et al. Hydrogen-electrodialysis with bipolar membrane(H-EDBM):First experiments and preliminary economic evaluation[J]. Desalination, 2024, 592:118169. doi: 10.1016/j.desal.2024.118169
|