1 |
ZHANG Xinran, SILVA I DA, GODFREY H G W,et al. Confinement of iodine molecules into triple-helical chains within robust metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(45):16289-16296. doi: 10.1021/jacs.7b08748
|
2 |
WANG Yunsheng, CHEN Yuantao, LIU Chen,et al. The effect of magnesium oxide morphology on adsorption of U(Ⅵ) from aqueous solution[J]. Chemical Engineering Journal, 2017, 316:936-950. doi: 10.1016/j.cej.2017.01.116
|
3 |
AHNERT A, BOROWSKI C. Environmental risk assessment of anthropogenic activity in the deep-sea[J]. Journal of Aquatic Ecosystem Stress and Recovery, 2000, 7(4):299-315. doi: 10.1023/a:1009963912171
|
4 |
BAKER A R. Inorganic iodine speciation in tropical Atlantic aerosol[J]. Geophysical Research Letters, 2004, 31(23):DOI:10.1029/2004GL020144. doi: 10.1029/2004gl020144
|
5 |
CARPENTER L J, CHANCE R J, SHERWEN T,et al. Marine iodine emissions in a changing world[J]. Proceedings of the Royal Society A, 2021, 477(2247):20200824. doi: 10.1098/rspa.2020.0824
|
6 |
李昭. 超深海压力和盐度环境模拟研究[D]. 桂林:桂林电子科技大学,2021.
|
7 |
ABDEL RAHMAN R O, GUSKOV A, KOZAK M W,et al. Recent evaluation of early radioactive disposal practice[M]// Natural Resources and Control Processes. Cham:Springer International Publishing, 2016:371-400. doi: 10.1007/978-3-319-26800-2_8
|
8 |
CHEN Hao, HUANG Yuzhe, ZHOU Cancan,et al. Effects of ultra-high pressure treatment on structure and bioactivity of polysaccharides from large leaf yellow tea[J]. Food Chemistry, 2022, 387:132862. doi: 10.1016/j.foodchem.2022.132862
|
9 |
ZHOU Yiming, WANG Tian, SHE Xuanming,et al. Pretreatment of buckwheat globulin by ultra-high pressure:Effects on enzymatic hydrolysis and final hydrolysate lipid metabolism regulation capacities[J]. Food Chemistry, 2022, 379:132102. doi: 10.1016/j.foodchem.2022.132102
|
10 |
|
|
NIE Shicheng, ZHANG Wei, TIAN Ge,et al. Improvement of emulsification performance of quinoa protein by ultra-high pressure treatment[J]. Chinese Journal of High Pressure Physics, 2021, 35(3):189-198. doi: 10.11858/gywlxb.20200645
|
11 |
|
|
LI Shenghua, LI Jinliang, WANG Xuzhi. Research progress on ultra-high pressure material synthesis equipment[J]. Journal of Synthetic Crystals, 2020, 49(7):1320-1325. doi: 10.3969/j.issn.1000-985X.2020.07.026
|
12 |
MAO H K, JI Cheng, LI Bing,et al. Extreme energetic materials at ultrahigh pressures[J]. Engineering, 2020, 6(9):976-980. doi: 10.1016/j.eng.2020.07.010
|
13 |
SONG Chunrui, XU Wei, LIEDIENOV N,et al. Novel multiferroic-like nanocomposite with high pressure-modulated magnetic and electric properties[J]. Advanced Functional Materials, 2022, 32(30):2113022. doi: 10.1002/adfm.202113022
|
14 |
RACZUK E, DMOCHOWSKA B, SAMASZKO-FIERTEK J,et al .Different schiff bases-structure,importance and classification[J]. Molecules(Basel,Switzerland), 2022, 27(3):787. doi: 10.3390/molecules27030787
|
15 |
|
|
HU Jingxiu, ZHANG Jing, ZOU Jianfeng,et al. Nitrogen-rich microporous carbon derived from melamine-based porous polymer for selective CO 2 adsorption[J]. Acta Physico-Chimica Sinica, 2014, 30(6):1169-1174. doi: 10.3866/PKU.WHXB201404223
|
16 |
IKEDA T, OCHIISHI H, YOSHIDA M,et al. Catalytic dehydrogenative β-alkylation of amino acid schiff bases with hydrocarbon[J]. Organic Letters, 2022, 24(1):369-373. doi: 10.1021/acs.orglett.1c04042
|
17 |
PUZARI A, BORAH D,DAS P. Binuclear Pd(Ⅱ) complexes with multidentate Schiff base ligands:Synthesis,catalysis,and antibacterial properties[J]. Monatshefte Für Chemie-Chemical Monthly, 2022, 153(5/6):435-442. doi: 10.1007/s00706-022-02929-5
|
18 |
LUAN Liping, TANG Bentian, MA Songmei,et al. Removal of aqueous Zn(Ⅱ) and Ni(Ⅱ) by Schiff base functionalized PAMAM dendrimer/silica hybrid materials[J]. Journal of Molecular Liquids, 2021, 330:115634. doi: 10.1016/j.molliq.2021.115634
|
19 |
LIU Rong, ZHANG Wei, CHEN Yuantao,et al. Highly efficient adsorption of iodine under ultrahigh pressure from aqueous solution[J]. Separation and Purification Technology, 2020, 233:115999. doi: 10.1016/j.seppur.2019.115999
|
20 |
WANG Yinghui, ZHAO Meng, ZHANG Lili,et al. Covalent organic polymers are highly effective absorbers of iodine in water under ultra-high pressure[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(3):1407-1415. doi: 10.1007/s10967-021-07900-y
|
21 |
|
|
TAN Wang, GUO Xinghua, ZHANG Shun,et al. Synthesis of nitrogen-rich covalent organic framework and its adsorption property for volatile iodine[J]. Chinese Science:Chemistry, 2019, 49(1):207-214. doi: 10.1360/n032018-00156
|
22 |
|
|
LI Qian, MA Xuedong, WANG Wei,et al. Schiff bases containing p-phenylenediamine and p-phenylenedicarbaldehyde and their complexes:Preparation and electrochemical properties[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(12):2271-2280. doi: 10.11862/CJIC.2020.253
|
23 |
FAN Shuo, SUN Yanlu, WANG Xueli,et al. A novel organic-inorganic flame retardant of ammonium polyphosphate chemically coated by Schiff base-containing branched polysiloxane for polyamide 6[J]. Polymers for Advanced Technologies, 2020, 31(11):2763-2774. doi: 10.1002/pat.5003
|
24 |
|
|
CHEN Jinyang, CHENG Hongbin. Ultrahigh-pressure in chemistry[J]. Bulletin of National Natural Science Foundation of China, 2006, 20(4):215-217. doi: 10.3969/j.issn.1000-8217.2006.04.006
|
25 |
LI Zijian, JU Yu, LU Huangjie,et al. Boosting the iodine adsorption and radioresistance of Th-UiO-66 MOFs via aromatic substitution[J]. Chemistry-A European Journal, 2021, 27(4):1286-1291. doi: 10.1002/chem.202003621
|
26 |
LAI K C, HIEW B Y Z, LEE L Y,et al. Ice-templated graphene oxide/chitosan aerogel as an effective adsorbent for sequestration of metanil yellow dye[J]. Bioresource Technology, 2019, 274:134-144. doi: 10.1016/j.biortech.2018.11.048
|
27 |
IIDA T, AMANO Y, MACHIDA M,et al. Effect of surface property of activated carbon on adsorption of nitrate ion[J]. Chemical & Pharmaceutical Bulletin, 2013, 61(11):1173-1177. doi: 10.1248/cpb.c13-00422
|
28 |
QIAO Wenzhu, ZHANG Peixu, SUN Lixiang,et al. Adsorption performance and mechanism of Schiff base functionalized polyamidoamine dendrimer/silica for aqueous Mn(Ⅱ) and Co(Ⅱ)[J]. Chinese Chemical Letters, 2020, 31(10):2742-2746. doi: 10.1016/j.cclet.2020.04.036
|
29 |
WANG Jianlong, GUO Xuan. Adsorption kinetic models:Physical meanings,applications,and solving methods[J]. Journal of Hazardous Materials, 2020, 390:122156. doi: 10.1016/j.jhazmat.2020.122156
|
30 |
GUO Xuan, LIU Yong, WANG Jianlong. Equilibrium,kinetics and molecular dynamic modeling of Sr 2+ sorption onto microplastics[J]. Journal of Hazardous Materials, 2020, 400:123324. doi: 10.1016/j.jhazmat.2020.123324
|
31 |
CHEN Peng, HE Xihong, PANG Maobin,et al. Iodine capture using Zr-based metal-organic frameworks(Zr-MOFs):Adsorption performance and mechanism[J]. ACS Applied Materials & Interfaces, 2020, 12(18):20429-20439. doi: 10.1021/acsami.0c02129
|
32 |
|
|
CHEN Qi, WANG Wentao, ZHANG Zhipeng,et al. Progress of covalent framework for radionuclides absorption[J]. Chemical Industry and Engineering Progress, 2021, 40(S2):241-255. doi: 10.16085/j.issn.1000-6613.2021-0951
|
33 |
LI Zijian, YUE Zenghui, JU Yu,et al. Ultrastable thorium metal-organic frameworks for efficient iodine adsorption[J]. Inorganic Chemistry, 2020, 59(7):4435-4442. doi: 10.1021/acs.inorgchem.9b03602
|
34 |
LI Min, YUAN Guoyuan, ZENG Yang,et al. Flexible surface-supported MOF membrane via a convenient approach for efficient iodine adsorption[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(3):1167-1177. doi: 10.1007/s10967-020-07135-3
|
35 |
QIN Jianxian, ZHANG Wei, CHEN Yuantao,et al. Zinc-based triazole metal complexes for efficient iodine adsorption in water[J]. Environmental Science and Pollution Research, 2021, 28(22):28797-28807. doi: 10.1007/s11356-021-12588-4
|
36 |
王迎辉,陈元涛,张炜,等. 香草醛类席夫碱的制备及其对水中碘的吸附研究[J]. 环境科学学报,2021,41(10):4013-4021.
|
|
WANG Yinghui, CHEN Yuantao, ZHANG Wei,et al. Preparation of vanillin Schiff base and its adsorption of iodine in water[J]. Acta Scientiae Circumstantiae,2021,41(10):4013-4021.
|
37 |
WU Zhineng, WEI Wei, MA Jianguo,et al. Adsorption of iodine on adamantane-based covalent organic frameworks[J]. ChemistrySelect, 2021, 6(38):10141-10148. doi: 10.1002/slct.202102656
|