工业水处理 ›› 2025, Vol. 45 ›› Issue (11): 165-173. doi: 10.19965/j.cnki.iwt.2024-0910

• 试验研究 • 上一篇    

生物炭负载纳米零价铁活化过一硫酸盐降解双酚A

伍传田1,2(), 陈奕洁1, 林超敏1, 李章良1,3,4(), 杨月珠1,3,4, 吕源财2   

  1. 1. 莆田学院环境与生物工程学院,福建 莆田 351100
    2. 福州大学环境与安全工程学院,福建 福州 350108
    3. 福建省新污染物生态影响与处理重点实验室,福建 莆田 351100
    4. 生态环境及 其信息图谱福建省高等学校重点实验室,福建 莆田 351100
  • 收稿日期:2025-01-25 出版日期:2025-11-20 发布日期:2025-11-20
  • 通讯作者: 李章良
  • 作者简介:

    伍传田(2000— ),硕士研究生,E-mail:

  • 基金资助:
    莆田学院科研项目(2024036); 莆田学院科研项目(2024026); 莆田学院大学生创新创业训练计划项目(X202411498021)

Biochar loaded nanoscale zero-valent iron activated peroxymonosulfate for the degradation of bisphenol A

Chuantian WU1,2(), Yijie CHEN1, Chaomin LIN1, Zhangliang LI1,3,4(), Yuezhu YANG1,3,4, Yuancai LÜ2   

  1. 1. College of Environmental and Biological Engineering, Putian University, Putian 351100, China
    2. College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
    3. Fujian Provincial Key Laboratory of Ecological Impacts and Treatment Technologies for Emerging Contaminants, Putian 351100, China
    4. Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University, Putian 351100, China
  • Received:2025-01-25 Online:2025-11-20 Published:2025-11-20
  • Contact: Zhangliang LI

摘要:

以玉米秸秆为原料制备生物炭(BC),然后以磷酸为改性剂制备磷改性生物炭(PBC),并采用液相还原法成功制备生物炭负载纳米零价铁复合材料(nZVI@PBC)。通过批次实验探究了不同铁碳比、反应体系、催化剂投加量、过一硫酸盐(PMS)投加量和溶液初始pH对双酚A(BPA)降解效果的影响。结果表明:铁碳比为1∶1的复合材料nZVI@PBC11能高效活化PMS,对BPA的降解效果最佳;与nZVI、PMS、nZVI@PBC11、nZVI/PMS反应体系相比,nZVI@PBC11/PMS反应体系对BPA的降解效果最优,且反应过程符合准一级反应动力学模型;在nZVI@PBC11催化剂投加量0.2 g/L、PMS投加量2.0 mmol/L、pH=3条件下反应40 min,BPA降解率达到99.4%,降解反应速率常数k为0.209 min-1。nZVI@PBC11催化剂具有良好的稳定性,循环使用3次后BPA降解率仍可达到74.9%。电子顺磁共振和自由基猝灭实验结果表明,nZVI@BC11/PMS反应体系对BPA的降解存在自由基(SO4 ·-、·OH、O2 ·-)和非自由基(1O2)两种途径,且以1O2、O2 ·-和SO4 ·-的贡献为主。该研究为高级氧化法降解水中有机污染物提供技术支撑。

关键词: 磷酸改性生物炭, 纳米零价铁, 过一硫酸盐, 双酚A, 降解机理

Abstract:

Phosphorus-modified biochar(PBC) was synthesized using corn straw as raw material and phosphoric acid as modifier. Biochar supported by nanoscale zero-valent iron composite (nZVI@PBC) was successfully prepared via a liquid-phase reduction method. Batch experiments were conducted to investigate the effects of various iron-to-carbon ratios, reaction systems, catalyst dosages, peroxymonosulfate(PMS) concentrations and initial solution pH on the degradation of bisphenol A (BPA). The results indicated that the composite nZVI@PBC11 (iron-to-carbon ratio of 1∶1) exhibited optimal performance in activating PMS and degrading BPA. Compared with the nZVI, PMS, nZVI@PBC11 and nZVI/PMS reaction systems, the nZVI@PBC11/PMS reaction system had the best degradation effect on BPA, and the reaction process conformed to the quasi-first-order reaction kinetics model. Under conditions of 0.2 g/L nZVI@PBC11 catalyst dosage, 2.0 mmol/L PMS and initial pH of 3, the BPA degradation rate reached 99.4% within 40 minutes, with a reaction rate constant k of 0.209 min-1. The nZVI@PBC11 catalyst had good stability and the degradation rate of BPA could still reach 74.9% after 3 cycles. The results of electron paramagnetic resonance and free radical quenching experiments revealed that the degradation of BPA by the nZVI@BC11/PMS reaction system followed radical (SO4 ·-, ·OH, O2 ·-) and non-radical (1O2) pathways, with 1O2, O2 ·- and SO4 ·- being the predominant contributors. This study provides technical support for the advanced oxidation method to degrade organic pollutants in water.

Key words: phosphoric acid modified biochar, nanoscale zero-valence iron, peroxymonosulfate, bisphenol A, degradation mechanism

中图分类号: