1 |
Nidheesh P V , Zhou M H , Oturan M A . An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197:210- 227.
doi: 10.1016/j.chemosphere.2017.12.195
|
2 |
Rahmani A R , Nematollahi D , Samarghandi M R , et al. A combined advanced oxidation process:Electrooxidation-ozonation for antibiotic ciprofloxacin removal from aqueous solution[J]. Journal of Electroanalytical Chemistry, 2018, 808:82- 89.
doi: 10.1016/j.jelechem.2017.11.067
|
3 |
Khandegar V , Saroha A K . Electrocoagulation for the treatment of textile industry effluent:A review[J]. Journal of Environmental Management, 2013, 128:949- 963.
doi: 10.1016/j.jenvman.2013.06.043
|
4 |
Aswathy P , Gandhimathi R , Ramesh S T , et al. Removal of organics from bilge water by batch electrocoagulation process[J]. Separation and Purification Technology, 2016, 159:108- 115.
doi: 10.1016/j.seppur.2016.01.001
|
5 |
Elabbas S , Ouazzani N , Mandi L , et al. Treatment of highly concentrated tannery wastewater using electrocoagulation:Influence of the quality of aluminium used for the electrode[J]. Journal of Hazardous Materials, 2016, 319:69- 77.
doi: 10.1016/j.jhazmat.2015.12.067
|
6 |
Nasrullah M , Singh L , Mohamad Z , et al. Treatment of palm oil mill effluent by electrocoagulation with presence of hydrogen peroxide as oxidizing agent and polialuminum chloride as coagulant-aid[J]. Water Resources and Industry, 2017, 17:7- 10.
doi: 10.1016/j.wri.2016.11.001
|
7 |
Wang T , Liu T Q . Pulse electro-coagulation application in treating dibutyl phthalate wastewater[J]. Water Science and Technology, 2017, 76 (5): 1124- 1131.
doi: 10.2166/wst.2017.258
|
8 |
Hussin F , Abnisa F , Issabayeva G , et al. Removal of lead by solar-photovoltaic electrocoagulation using novel perforated zinc electrode[J]. Journal of Cleaner Production, 2017, 147:206- 216.
doi: 10.1016/j.jclepro.2017.01.096
|
9 |
肖应东.一种电絮凝废水处理装置: CN, 104192954A[P]. 2014-12-10.
|
10 |
Zhi D , Qin J L , Zhou H , et al. Removal of tetracycline by electrochemical oxidation using a Ti/SnO2-Sb anode:Characterization, kinetics, and degradation pathway[J]. Journal of Applied Electrochemistry, 2017, 47 (12): 1313- 1322.
doi: 10.1007/s10800-017-1125-7
|
11 |
Oladunni J , Zain J H , Hai A , et al. A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization:From theory to practice[J]. Separation and Purification Technology, 2018, 207:291- 320.
doi: 10.1016/j.seppur.2018.06.046
|
12 |
Comninellis C , Chen G H . Electrochemistry for the Environment[J]. Journal of Applied Electrochemistry, 2010, 40 (12): 2203.
doi: 10.1007/s10800-010-0229-0
|
13 |
Zhao B , Zhu W K , Mu T , et al. Electrochemical oxidation of EDTA in nuclear wastewater using platinum supported on activated carbon fibers[J]. International Journal of Environmental Research and Public Health, 2017, 14 (7): 819.
doi: 10.3390/ijerph14070819
|
14 |
Tu X , Xiao S H , Song Y H , et al. Treatment of simulated berberine wastewater by electrochemical process with Pt/Ti anode[J]. Environmental Earth Sciences, 2015, 73 (9): 4957- 4966.
doi: 10.1007/s12665-015-4323-9
|
15 |
Music D , Breunung J , Mráz S , et al. Role of RuO3 for the formation of RuO2 nanorods[J]. Applied Physics Letters, 2012, 100 (3): 033108.
doi: 10.1063/1.3677665
|
16 |
Farizoglu B . Reactive black 5 removal with electro-oxidation method using Ti/IrO2/RuO2 anode and stainless steel cathode[J]. International Journal of Electrochemical Science, 2018, 3288- 3296.
doi: 10.20964/2018.04.58
|
17 |
Berenguer R , Sieben J M , Quijada C , et al. Electrocatalytic degradation of phenol on Pt-and Ru-doped Ti/SnO2-Sb anodes in an alkaline medium[J]. Applied Catalysis B:Environmental, 2016, 199:394- 404.
doi: 10.1016/j.apcatb.2016.06.038
|
18 |
卓琼芳, 杨波, 邓述波, 等. 用于有机物降解的电化学阳极材料[J]. 化学进展, 2012, 24 (4): 628- 636.
URL
|
19 |
Isarain-Chávez E , Baró M D , Rossinyol E , et al. Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes[J]. Electrochimica Acta, 2017, 244:199- 208.
doi: 10.1016/j.electacta.2017.05.101
|
20 |
Yao F B , Zhong Y , Yang Q , et al. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode[J]. Journal of Hazardous Materials, 2017, 323:602- 610.
doi: 10.1016/j.jhazmat.2016.08.052
|
21 |
Cho W C , Poo K M , Mohamed H O , et al. Non-selective rapid electro-oxidation of persistent, refractory VOCs in industrial wastewater using a highly catalytic and dimensionally stable IrPd/Ti composite electrode[J]. Chemosphere, 2018, 206:483- 490.
doi: 10.1016/j.chemosphere.2018.05.060
|
22 |
Li G Z , Li G , Wang H , et al. Preparation of Sb doped nano SnO2/Porous Ti electrode and its degradation of methylene orange[J]. Rare Metal Materials and Engineering, 2015, 44 (6): 1326- 1330.
doi: 10.1016/S1875-5372(15)30083-7
|
23 |
Aguilar Z G , Coreno O , Salazar M , et al. Ti|Ir-Sn-Sb oxide anode:Service life and role of the acid sites content during water oxidation to hydroxyl radicals[J]. Journal of Electroanalytical Chemistry, 2018, 820:82- 88.
doi: 10.1016/j.jelechem.2018.04.053
|
24 |
Xu M , Wang Z C , Wang F W , et al. Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation[J]. Electrochimica Acta, 2016, 201:240- 250.
doi: 10.1016/j.electacta.2016.03.168
|
25 |
Zhang Q L , Guo X Y , Cao X D , et al. Facile preparation of a Ti/α-PbO2/β-PbO2 electrode for the electrochemical degradation of 2-chlorophenol[J]. Chinese Journal of Catalysis, 2015, 36 (7): 975- 981.
doi: 10.1016/S1872-2067(15)60851-8
|
26 |
Irikura K , Bocchi N , Rocha-Filho R C , et al. Electrodegradation of the acid Green 28 dye using Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes[J]. Journal of Environmental Management, 2016, 183:306- 313.
URL
|
27 |
Song S , Fan J Q , He Z Q , et al. Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes[J]. Electrochimica Acta, 2010, 55 (11): 3606- 3613.
doi: 10.1016/j.electacta.2010.01.101
|
28 |
Xing J T , Chen D H , Zhao W , et al. Preparation and characterization of a novel porous Ti/SnO2-Sb2O3-CNT/PbO2 electrode for the anodic oxidation of phenol wastewater[J]. RSC Advances, 2015, 5 (66): 53504- 53513.
doi: 10.1039/C5RA07146A
|
29 |
Duan X Y , Zhao C M , Liu W , et al. Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol[J]. Electrochimica Acta, 2017, 240:424- 436.
doi: 10.1016/j.electacta.2017.04.114
|
30 |
Li X L , Xu H , Yan W . Fabrication and characterization of PbO2 electrode modified with polyvinylidene fluoride(PVDF)[J]. Applied Surface Science, 2016, 389:278- 286.
doi: 10.1016/j.apsusc.2016.07.123
|
31 |
Liu Z L , Li H J , Li M J , et al. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater[J]. Journal of Hazardous Materials, 2017, 327:144- 152.
doi: 10.1016/j.jhazmat.2016.12.056
|
32 |
Souza F L , Saéz C , Lanza M R V , et al. The effect of the sp3/sp2 carbon ratio on the electrochemical oxidation of 2, 4-D with p-Si BDD anodes[J]. Electrochimica Acta, 2016, 187:119- 124.
doi: 10.1016/j.electacta.2015.11.031
|
33 |
Liu Z L , Li H J , Li M J , et al. Preparation of polycrystalline BDD/Ta electrodes for electrochemical oxidation of organic matter[J]. Electrochimica Acta, 2018, 290:109- 117.
doi: 10.1016/j.electacta.2018.09.058
|
34 |
He Y P , Huang W M , Chen R L , et al. Enhanced electrochemical oxidation of organic pollutants by boron-doped diamond based on porous titanium[J]. Separation and Purification Technology, 2015, 149:124- 131.
doi: 10.1016/j.seppur.2015.05.008
|
35 |
Jiang N , Zhao Q L , Xue Y , et al. Removal of dinitrotoluene sulfonate from explosive wastewater by electrochemical method using Ti/IrO2 as electrode[J]. Journal of Cleaner Production, 2018, 188:732- 740.
doi: 10.1016/j.jclepro.2018.04.030
|
36 |
Wang Y , Shen C C , Zhang M M , et al. The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode:Influencing factors, reaction pathways and energy demand[J]. Chemical Engineering Journal, 2016, 296:79- 89.
doi: 10.1016/j.cej.2016.03.093
|
37 |
Li L H , Huang Z P , Fan X X , et al. Preparation and characterization of a Pd modified Ti/SnO2-Sb anode and its electrochemical degradation of Ni-EDTA[J]. Electrochimica Acta, 2017, 231:354- 362.
doi: 10.1016/j.electacta.2017.02.072
|
38 |
Duan X Y , Ma F , Yuan Z X , et al. Lauryl benzene sulfonic acid sodium-carbon nanotube-modified PbO2 electrode for the degradation of 4-chlorophenol[J]. Electrochimica Acta, 2012, 76:333- 343.
doi: 10.1016/j.electacta.2012.05.036
|
39 |
Wang C , Yin L F , Xu Z S , et al. Electrochemical degradation of enrofloxacin by lead dioxide anode:Kinetics, mechanism and toxicity evaluation[J]. Chemical Engineering Journal, 2017, 326:911- 920.
doi: 10.1016/j.cej.2017.06.038
|
40 |
Soni B D , Patel U D , Agrawal A , et al. Application of BDD and DSA electrodes for the removal of RB 5 in batch and continuous operation[J]. Journal of Water Process Engineering, 2017, 17:11- 21.
doi: 10.1016/j.jwpe.2017.01.009
|
41 |
Xu D , Li Y , Yin L F , et al. Electrochemical removal of nitrate in industrial wastewater[J]. Frontiers of Environmental Science & Engineering, 2018, 12 (1): 1- 14.
URL
|
42 |
Reyter D , Bélanger D , Roué L . Optimization of the cathode material for nitrate removal by a paired electrolysis process[J]. Journal of Hazardous Materials, 2011, 192 (2): 507- 513.
doi: 10.1016/j.jhazmat.2011.05.054
|
43 |
Su L H , Li K , Zhang H B , et al. Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode[J]. Water Research, 2017, 120:1- 11.
doi: 10.1016/j.watres.2017.04.069
|
44 |
Ghazouani M , Akrout H , Jomaa S , et al. Enhancing removal of nitrates from highly concentrated synthetic wastewaters using bipolar Si/BDD cell:Optimization and mechanism study[J]. Journal of Electroanalytical Chemistry, 2016, 783:28- 40.
doi: 10.1016/j.jelechem.2016.10.048
|
45 |
Ding Jing , Li Wei , Zhao Qing Liang , et al. Electroreduction of nitrate in water:Role of cathode and cell configuration[J]. Chemical Engineering Journal, 2015, 271:252- 259.
doi: 10.1016/j.cej.2015.03.001
|
46 |
Li X H , Li H Y , Xu X J , et al. Preparation of a reduced graphene oxide@stainless steel net electrode and its application of electrochemical removal pb(Ⅱ)[J]. Journal of the Electrochemical Society, 2017, 164 (4): E71- E77.
doi: 10.1149/2.1211704jes
|
47 |
Ma X J , Li M , Liu X , et al. A graphene oxide nanosheet-modified Ti nanocomposite electrode with enhanced electrochemical property and stability for nitrate reduction[J]. Chemical Engineering Journal, 2018, 348:171- 179.
doi: 10.1016/j.cej.2018.04.168
|
48 |
Lou Z M , Li Y Z , Zhou J S , et al. TiC doped palladium/nickel foam cathode for electrocatalytic hydrodechlorination of 2, 4-DCBA:Enhanced electrical conductivity and reactive activity[J]. Journal of Hazardous Materials, 2019, 362:148- 159.
doi: 10.1016/j.jhazmat.2018.08.066
|
49 |
Huang C C , Su Y J . Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths[J]. Journal of Hazardous Materials, 2010, 175 (1/2/3): 477- 483.
URL
|
50 |
Feng C J , Chen Y , Yu C P , et al. Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water[J]. Chemosphere, 2018, 208:285- 293.
doi: 10.1016/j.chemosphere.2018.05.174
|
51 |
梁宏旭, 赵新坤, 宋彬, 等. 改性活性碳毡电吸附污水中的Zn2+[J]. 中国环境科学, 2018, 38 (4): 1336- 1345.
URL
|
52 |
Shen J M , Li Y , Wang C H , et al. Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization[J]. Electrochimica Acta, 2018, 273:34- 42.
doi: 10.1016/j.electacta.2018.04.004
|
53 |
Ren Q D , Wang G , Wu T T , et al. Calcined MgAl-layered double Hydroxide/Graphene hybrids for capacitive deionization[J]. Industrial & Engineering Chemistry Research, 2018, 57 (18): 6417- 6425.
URL
|
54 |
Luo G M , Wang Y Z , Gao L X , et al. Graphene bonded carbon nanofiber aerogels with high capacitive deionization capability[J]. Electrochimica Acta, 2018, 260:656- 663.
doi: 10.1016/j.electacta.2017.12.012
|
55 |
Zhu G , Wang H Y , Xu H F , et al. Enhanced capacitive deionization by nitrogen-doped porous carbon nanofiber aerogel derived from bacterial-cellulose[J]. Journal of Electroanalytical Chemistry, 2018, 822:81- 88.
doi: 10.1016/j.jelechem.2018.05.024
|
56 |
Li Y J , Liu Y , Wang M , et al. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization[J]. Carbon, 2018, 130:377- 383.
doi: 10.1016/j.carbon.2018.01.035
|