1 |
WANG Jianlong, ZHUAN Run, CHU Libing. The occurrence,distribution and degradation of antibiotics by ionizing radiation:An overview[J]. Science of the Total Environment, 2019, 646:1385-1397. doi: 10.1016/j.scitotenv.2018.07.415
|
2 |
SCOTT G I, PORTER D E, NORMAN R S,et al. Antibiotics as CECs:An overview of the hazards posed by antibiotics and antibiotic resistance[J]. Frontiers in Marine Science, 2016, 3:24. doi: 10.3389/fmars.2016.00024
|
3 |
CHANG Qiuzhi, WANG Weike, REGEV-YOCHAY G,et al. Antibiotics in agriculture and the risk to human health:How worried should we be?[J]. Evolutionary Applications, 2015, 8(3):240-247. doi: 10.1111/eva.12185
|
4 |
|
|
ZHANG Yan, YAN Xiaoju, SUN Yue,et al. Current situation of antibiotic abuse in China and its residues distribution in the environment[J]. Contemporary Chemical Industry, 2019, 48(11):2660-2662. doi: 10.3969/j.issn.1671-0460.2019.11.054
|
5 |
HVISTENDAHL M. Public health:China takes aim at rampant antibiotic resistance[J]. Science, 2012, 336(6083):795. doi: 10.1126/science.336.6083.795
|
6 |
JO H, RAZA S, FAROOQ A,et al. Fish farm effluents as a source of antibiotic resistance gene dissemination on Jeju Island,South Korea[J]. Environmental Pollution, 2021, 276:116764. doi: 10.1016/j.envpol.2021.116764
|
7 |
PAULUS G K, HORNSTRA L M, ALYGIZAKIS N,et al. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes[J]. International Journal of Hygiene and Environmental Health, 2019, 222(4):635-644. doi: 10.1016/j.ijheh.2019.01.004
|
8 |
HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices:A review[J]. Journal of Environmental Management, 2011, 92(10):2304-2347. doi: 10.1016/j.jenvman.2011.05.023
|
9 |
|
|
YIN Fubin, ZHAN Yuanhang, YUE Caide,et al. Research progress on membrane technology for treatment of husbandry biogas slurry and wastewater[J]. Journal of Agro-Environment Science, 2021, 40(11):2335-2341. doi: 10.11654/jaes.2021-1118
|
10 |
ZHU Tingting, SU Zhongxian, LAI Wenxia,et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of the Total Environment, 2021, 776:145906. doi: 10.1016/j.scitotenv.2021.145906
|
11 |
WANG Jianlong, WANG Shizong. Preparation,modification and environmental application of biochar:A review[J]. Journal of Cleaner Production, 2019, 227:1002-1022. doi: 10.1016/j.jclepro.2019.04.282
|
12 |
WANG Jianlong, ZHUAN Run. Degradation of antibiotics by advanced oxidation processes:An overview[J]. Science of the Total Environment, 2020, 701:135023. doi: 10.1016/j.scitotenv.2019.135023
|
13 |
FERNÁNDEZ-IBÁÑEZ P, POLO-LÓPEZ M I, MALATO S,et al. Solar photocatalytic disinfection of water using titanium dioxide graphene composites[J]. Chemical Engineering Journal, 2015, 261:36-44. doi: 10.1016/j.cej.2014.06.089
|
14 |
MA Dengsheng, YI Huan, LAI Cui,et al. Critical review of advanced oxidation processes in organic wastewater treatment[J]. Chemosphere, 2021, 275:130104. doi: 10.1016/j.chemosphere.2021.130104
|
15 |
MONTENEGRO-AYO R, MORALES-GOMERO J C, ALARCON H,et al. Photoelectrocatalytic degradation of 2,4-dichlorophenol in a TiO 2 nanotube-coated disc flow reactor[J]. Chemosphere, 2021, 268:129320. doi: 10.1016/j.chemosphere.2020.129320
|
16 |
ZHANG Yanyu, WANG Aimin, TIAN Xiujun,et al. Efficient mineralization of the antibiotic trimethoprim by solar assisted photoelectro-Fenton process driven by a photovoltaic cell[J]. Journal of Hazardous Materials, 2016, 318:319-328. doi: 10.1016/j.jhazmat.2016.07.021
|
17 |
DIVYAPRIYA G, SINGH S, MARTÍNEZ-HUITLE C A,et al. Treatment of real wastewater by photoelectrochemical methods:An overview[J]. Chemosphere, 2021, 276:130188. doi: 10.1016/j.chemosphere.2021.130188
|
18 |
RAJPUT H, KWON E E, YOUNIS S A,et al. Photoelectrocatalysis as a high-efficiency platform for pulping wastewater treatment and energy production[J]. Chemical Engineering Journal, 2021, 412:128612. doi: 10.1016/j.cej.2021.128612
|
19 |
JIANG Chaoran, MONIZ S J A, WANG Aiqin,et al. Photoelectrochemical devices for solar water splitting:Materials and challenges[J]. Chemical Society Reviews, 2017, 46(15):4645-4660. doi: 10.1039/c6cs00306k
|
20 |
CHEN Dongjie, CHENG Yanling, ZHOU Nan,et al. Photocatalytic degradation of organic pollutants using TiO 2-based photocatalysts:A review[J]. Journal of Cleaner Production, 2020, 268:121725. doi: 10.1016/j.jclepro.2020.121725
|
21 |
LI Di, SHI Weidong. Recent developments in visible-light photocatalytic degradation of antibiotics[J]. Chinese Journal of Catalysis, 2016, 37(6):792-799. doi: 10.1016/s1872-2067(15)61054-3
|
22 |
LU Na, CHEN Shuo, WANG Hongtao,et al. Synthesis of molecular imprinted polymer modified TiO 2 nanotube array electrode and their photoelectrocatalytic activity[J]. Journal of Solid State Chemistry, 2008, 181(10):2852-2858. doi: 10.1016/j.jssc.2008.07.004
|
23 |
|
|
FU Shurong, ZHANG Qinsheng, LU Jinzhi,et al. Research progress of fabrication of ZnO-based photoanode and photoelectrocatalytic water splitting performances[J]. Chemical Industry and Engineering Progress, 2021, 40(3):1413-1424. doi: 10.16085/j.issn.1000-6613.2020-0845
|
24 |
PELEYEJU M G, VILJOEN E L. WO 3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from water:A review[J]. Journal of Water Process Engineering, 2021, 40:101930. doi: 10.1016/j.jwpe.2021.101930
|
25 |
ALSALKA Y, GRANONE L I, RAMADAN W,et al. Iron-based photocatalytic and photoelectrocatalytic nano-structures:Facts,perspectives,and expectations[J]. Applied Catalysis B:Environmental, 2019, 244:1065-1095. doi: 10.1016/j.apcatb.2018.12.014
|
26 |
HAN Yu, ZHANG Zhuang, ZHANG L,et al. Improved Norfloxacin degradation by urea precipitation Ti/SnO 2-Sb anode under photoelectrocatalysis and kinetics investigation by BPneural-network-physical modeling[J]. Journal of Cleaner Production, 2021, 280:124412. doi: 10.1016/j.jclepro.2020.124412
|
27 |
GARCIA-SEGURA S, BRILLAS E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2017, 31:1-35. doi: 10.1016/j.jphotochemrev.2017.01.005
|
28 |
SU Y F, WANG Guanbo, KUO D T F,et al. Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO 2/Ti photoanode[J]. Applied Catalysis B:Environmental, 2016, 186:184-192. doi: 10.1016/j.apcatb.2016.01.003
|
29 |
周芳. TiO2/MoS2(CuS)异质结构光电催化性能研究[D]. 哈尔滨:哈尔滨工业大学,2021.
|
|
ZHOU Fang. Study on photocatalytic and electrocatalytic properties of titanium dioxide/molybdenum disulfide(copper sulfide) heterostructures[D]. Harbin:Harbin Institute of Technology,2021.
|
30 |
SONG Rui, CHI Haibo, MA Qiuling,et al. Highly efficient degradation of persistent pollutants with 3D nanocone TiO 2-based photoelectrocatalysis[J]. Journal of the American Chemical Society, 2021, 143(34):13664-13674. doi: 10.1021/jacs.1c05008
|
31 |
LIU Dong, LI Huijun, GAO Ranpeng,et al. Enhanced visible light photoelectrocatalytic degradation of tetracycline hydrochloride by I and P co-doped TiO 2 photoelectrode[J]. Journal of Hazardous Materials, 2021, 406:124309. doi: 10.1016/j.jhazmat.2020.124309
|
32 |
JIA Meiying, LIU Qi, XIONG Weiping,et al. Ti 3+ self-doped TiO 2 nanotubes photoelectrode decorated with Ar-Fe 2O 3 derived from MIL-100(Fe):Enhanced photo-electrocatalytic performance for antibiotic degradation[J]. Applied Catalysis B(Environmental), 2022, 310:121344. doi: 10.1016/j.apcatb.2022.121344
|
33 |
LI Yaping, SUN Xianglin, TANG Yiming,et al. Understanding photoelectrocatalytic degradation of tetracycline over three-dimensional coral-like ZnO/BiVO 4 nanocomposite[J]. Materials Chemistry and Physics, 2021, 271:124871. doi: 10.1016/j.matchemphys.2021.124871
|
34 |
JIANG Tao, CHENG Ling, HAN Yingchun,et al. One-pot hydrothermal synthesis of Bi 2O 3-WO 3 p-n heterojunction film for photoelectrocatalytic degradation of norfloxacin[J]. Separation and Purification Technology, 2020, 238:116428. doi: 10.1016/j.seppur.2019.116428
|
35 |
DI Yanwei, MA Chun, FU Yinghuan,et al. Engineering cationic sulfur-doped Co 3O 4 architectures with exposing high-reactive(112) facets for photoelectrocatalytic water purification[J]. ACS Applied Materials & Interfaces, 2021, 13(7):8405-8416. doi: 10.1021/acsami.0c20353
|
36 |
YU Han, DOU Dexing, ZHAO Jingyun,et al. The exploration of Ti/SnO 2-Sb anode/air diffusion cathode/UV dual photoelectric catalytic coupling system for the biological harmless treatment of real antibiotic industrial wastewater[J]. Chemical Engineering Journal, 2021, 412:128581. doi: 10.1016/j.cej.2021.128581
|
37 |
WEI Zhidong, LIU Junying, SHANGGUAN Wenfeng. A review on photocatalysis in antibiotic wastewater:Pollutant degradation and hydrogen production[J]. Chinese Journal of Catalysis, 2020, 41(10):1440-1450. doi: 10.1016/s1872-2067(19)63448-0
|
38 |
AI Changzhi, TONG Li, WANG Zhipeng,et al. Facile synthesis and photoelectrochemical properties of novel TiN/C 3N 4/CdS nanotube core/shell arrays[J]. Chinese Journal of Catalysis, 2020, 41(10):1645-1653. doi: 10.1016/s1872-2067(19)63512-6
|
39 |
MA Enhui, SUN Guolong, DUAN Fanglin,et al. Visible-light-responsive Z-scheme heterojunction MoS 2 NTs/CuInS 2 QDs photoanode for enhanced photoelectrocatalytic degradation of tetracycline[J]. Applied Materials Today, 2022, 28:101504. doi: 10.1016/j.apmt.2022.101504
|
40 |
ZHENG Zexiao, LI Xukai, LI Laisheng,et al. Photoelectrocatalytic degradation of amoxicillin over quaternary ZnO/ZnSe/CdSe/MoS 2 hierarchical nanorods[J]. International Journal of Hydrogen Energy, 2019, 44(37):20826-20838. doi: 10.1016/j.ijhydene.2018.06.150
|
41 |
CAO Di, WANG Yanbin, QIAO Meng,et al. Enhanced photoelectrocatalytic degradation of norfloxacin by an Ag 3PO 4/BiVO 4 electrode with low bias[J]. Journal of Catalysis, 2018, 360:240-249. doi: 10.1016/j.jcat.2018.01.017
|
42 |
LING Yulin, DAI Youzhi, ZHOU Jianhong. Fabrication and high photoelectrocatalytic activity of scaly BiOBr nanosheet arrays[J]. Journal of Colloid and Interface Science, 2020, 578:326-337. doi: 10.1016/j.jcis.2020.05.111
|
43 |
MAFA P J, KUVAREGA A T, MAMBA B B,et al. Photoelectrocatalytic degradation of sulfamethoxazole on g-C 3N 4/BiOI/EG p-n heterojunction photoanode under visible light irradiation[J]. Applied Surface Science, 2019, 483:506-520. doi: 10.1016/j.apsusc.2019.03.281
|
44 |
YU Tingting, LIU Qingsong, ZHU Zhiyuan,et al. Construction of a photocatalytic fuel cell using a novel Z-scheme MoS 2/rGO/Bi 2S 3 as electrode degraded antibiotic wastewater[J]. Separation and Purification Technology, 2021, 277:119276. doi: 10.1016/j.seppur.2021.119276
|
45 |
ZHU Qiaohong, XU Qing, DU Mengmeng,et al. Recent progress of metal sulfide photocatalysts for solar energy conversion[J]. Advanced Materials, 2022, 34(45):e2202929. doi: 10.1002/adma.202202929
|
46 |
TRUONG H B,BAE S, CHO J,et al. Advances in application of g-C 3N 4-based materials for treatment of polluted water and wastewater via activation of oxidants and photoelectrocatalysis:A comprehensive review[J]. Chemosphere, 2022, 286:131737. doi: 10.1016/j.chemosphere.2021.131737
|
47 |
YU Chengze, HOU Jiaqi, ZHANG Bin,et al. In-situ electrodeposition synthesis of Z-scheme rGO/g-C 3N 4/TNAs photoelectrodes and its degradation mechanism for oxytetracycline in dual-chamber photoelectrocatalytic system[J]. Journal of Environmental Management, 2022, 308:114615. doi: 10.1016/j.jenvman.2022.114615
|
48 |
QIN Yiming, YANG Shuai, YOU Xinyu,et al. Carbon nitride coupled with Fe-based MOFs as an efficient photoelectrocatalyst for boosted degradation of ciprofloxacin:Mechanism,pathway and fate[J]. Separation and Purification Technology, 2022, 296:121325. doi: 10.1016/j.seppur.2022.121325
|
49 |
KADEER K, REHEMAN A, MAIMAITIZI H,et al. Preparation of rGO/AgCl QDs and its enhanced photoelectrocatalytic performance for the degradation of Tetracycline[J]. Journal of the American Ceramic Society, 2019, 102(9):5342-5352. doi: 10.1111/jace.16391
|
50 |
MAFA P J, PATALA R, MAMBA B B,et al. Plasmonic Ag 3PO 4/EG photoanode for visible light-driven photoelectrocatalytic degradation of diuretic drug[J]. Chemical Engineering Journal, 2020, 393:124804. doi: 10.1016/j.cej.2020.124804
|
51 |
Yihan LÜ, LIU Haiyang, JIN Dexin,et al. Effective degradation of norfloxacin on Ag 3PO 4/CNTs photoanode:Z-scheme mechanism,reaction pathway,and toxicity assessment[J]. Chemical Engineering Journal, 2022, 429:132092. doi: 10.1016/j.cej.2021.132092
|
52 |
WANG Yaqi, WU Jiakun, YAN Yu,et al. Black phosphorus-based semiconductor multi-heterojunction TiO 2-BiVO 4-BP/RP film with an in situ junction and Z-scheme system for enhanced photoelectrocatalytic activity[J]. Chemical Engineering Journal, 2021, 403:126313. doi: 10.1016/j.cej.2020.126313
|
53 |
MAMBA G, MAFA P J, MUTHURAJ V,et al. Heterogeneous advanced oxidation processes over stoichiometric ABO 3 perovskite nanostructures[J]. Materials Today Nano, 2022, 18:100184. doi: 10.1016/j.mtnano.2022.100184
|
54 |
LIU Y H, SHIH S C, LIU Weicheng,et al. Electrospun YFeO 3 and activated carbon nanofibers as electrodes for photoelectrochemical degradation of Orange Ⅱ and sulfamethazine[J]. Journal of Water Process Engineering, 2022, 47:102649. doi: 10.1016/j.jwpe.2022.102649
|
55 |
WANG Keyi, LIANG Gaozhou, WAQAS M,et al. Peroxymonosulfate enhanced photoelectrocatalytic degradation of ofloxacin using an easily coated cathode[J]. Separation and Purification Technology, 2020, 236:116301. doi: 10.1016/j.seppur.2019.116301
|
56 |
HOSSEINI M, ESRAFILI A, FARZADKIA M,et al. Degradation of ciprofloxacin antibiotic using photo-electrocatalyst process of Ni-doped ZnO deposited by RF sputtering on FTO as an anode electrode from aquatic environments:Synthesis,kinetics,and ecotoxicity study[J]. Microchemical Journal, 2020, 154:104663. doi: 10.1016/j.microc.2020.104663
|
57 |
YE Shangshi, CHEN Yingxu, YAO Xiaoling,et al. Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis:A review[J]. Chemosphere, 2021, 273:128503. doi: 10.1016/j.chemosphere.2020.128503
|
58 |
CHENG Ling, TIAN Yulu, ZHANG Jingdong. Construction of p-n heterojunction film of Cu 2O/ α-Fe 2O 3 for efficiently photoelectrocatalytic degradation of oxytetracycline[J]. Journal of Colloid and Interface Science, 2018, 526:470-479. doi: 10.1016/j.jcis.2018.04.106
|
59 |
TANG Haifang, SHANG Qian, TANG Yanhong,et al. Static and continuous flow photoelectrocatalytic treatment of antibiotic wastewater over mesh of TiO 2 nanotubes implanted with g-C 3N 4 nanosheets[J]. Journal of Hazardous Materials, 2020, 384:121248. doi: 10.1016/j.jhazmat.2019.121248
|
60 |
张警方. CeZn/TiO2纳米管阵列光电催化降解苯并异噻唑啉酮[D]. 大连:大连理工大学,2020.
|
|
ZHANG Jingfang. The photoelectrocatalytic degradation of benzoisothiazolinone by CeZn/TiO2 nanotube array[D]. Dalian:Dalian University of Technology,2020.
|
61 |
DUAN Pingzhou, YANG Xiaoming, HUANG Geli,et al. La 2O 3-CuO 2/CNTs electrode with excellent electrocatalytic oxidation ability for ceftazidime removal from aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 569:119-128. doi: 10.1016/j.colsurfa.2019.02.056
|
62 |
GOULART L A, MORATALLA A, LANZA M R V,et al. Photo-electrocatalytic treatment of levofloxacin using Ti/MMO/ZnO electrode[J]. Chemosphere, 2021, 284:131303. doi: 10.1016/j.chemosphere.2021.131303
|
63 |
KOIKI B A, ORIMOLADE B O, ZWANE B N,et al. Sulphate radical enhanced photoelectrochemical degradation of sulfamethoxazole on a fluorine doped tin oxide-copper(Ⅰ) oxide photoanode[J]. Journal of Electroanalytical Chemistry, 2021, 900:115714. doi: 10.1016/j.jelechem.2021.115714
|
64 |
MA Qiuting, YAN Chenglu, Wendi LÜ,et al. Coexisting chloride ion for boosting the photoelectrocatalytic degradation efficiency of organic dyes[J]. Catalysis Letters, 2023, 152(2):378-387. doi: 10.1007/s10562-022-03978-5
|
65 |
AYOUBI-FEIZ B, MASHHADIZADEH M H, SHEYDAEI M. Preparation of reusable nano N-TiO 2/graphene/titanium grid sheet for electrosorption-assisted visible light photoelectrocatalytic degradation of a pesticide:Effect of parameters and neural network modeling[J]. Journal of Electroanalytical Chemistry, 2018, 823:713-722. doi: 10.1016/j.jelechem.2018.07.020
|