Industrial Water Treatment ›› 2023, Vol. 43 ›› Issue (11): 104-113. doi: 10.19965/j.cnki.iwt.2022-0802

• SUMMARIES AND THESES ON SPECIAL TOPICS • Previous Articles     Next Articles

Research progress in photoelectrocatalytic degradation of antibiotics in wastewater

Huixia ZHANG1(), Lingzhi ZHU1(), Lishan ZHOU2, Chenxin XIE2, Chenglei ZHANG2, Enshan HAN1   

  1. 1. College of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
    2. CenerTech Tianjin Chemical Research and Design Institute Co. , Ltd. , Tianjin 300131, China
  • Received:2023-08-25 Online:2023-11-20 Published:2023-11-21

光电催化降解废水中抗生素的研究进展

张会霞1(), 朱令之1(), 周立山2, 谢陈鑫2, 张程蕾2, 韩恩山1   

  1. 1. 河北工业大学化工学院, 天津 300401
    2. 中海油天津化工研究设计院有限公司, 天津 300131

Abstract:

The abuse of antibiotics causes serious environmental pollution and endangers human health. Photoelectrocatalytic technology(PEC) uses photocatalytic reactions assisted electrochemical to suppress the recombination of photo generated electron-hole by applying an external bias to the photocatalyst under light,which can increase the concentration of free radicals and significantly improve the organic matter degradation rate. PEC has the advantages of environmental protection,energy conservation,strong oxidation ability and easy operation,and has become one of the most promising advanced oxidation technologies for removing refractory pollutants such as antibiotics. The progress of PEC degrading antibiotics was comprehensively reviewed,and the principle of PEC was introduced. The modification methods and properties of electrode materials were summarized. The latest applications of PEC degrading antibiotics and the effects of bias potential,pH,electrolyte,light source on the antibiotic degradation rate in the experiment were expounded. Finally,the prospects and challenges of PEC degrading antibiotics were summarized,in order to provide a reference for the application of photoelectrocatalytic technology to efficiently treat antibiotic wastewater.

Key words: photoelectrocatalysis, electrode material, antibiotics, advanced oxidation

摘要:

抗生素滥用造成了严重的环境污染并危害人体健康。光电催化技术(PEC)以电化学辅助光催化反应,在光照下通过向光催化剂施加外部偏压抑制光生电子-空穴对的复合,提高自由基浓度,以此显著提高系统对有机物的降解速率,具有环保节能、氧化能力强、操作方便等优势,已成为去除抗生素等难降解污染物最有前景的高级氧化技术之一。对PEC降解抗生素的进展进行了全面综述,介绍了PEC原理,重点总结了电极材料改性方法及其性能,阐述了PEC降解抗生素的最新应用及降解中偏置电压、pH、电解液、光源等对抗生素降解率的影响,最后对PEC降解抗生素的前景和挑战进行了总结和展望,以期为应用光电催化技术高效处理抗生素废水的研究提供参考。

关键词: 光电催化, 电极材料, 抗生素, 高级氧化

CLC Number: