1 |
JANJHI F A, IHSANULLAH I, BILAL M,et al. MXene-based materials for removal of antibiotics and heavy metals from wastewater:A review[J]. Water Resources and Industry, 2023, 29:100202. doi: 10.1016/j.wri.2023.100202
|
2 |
YANG Xiaojun, LIU Yongcong, HU Sixian,et al. Construction of Fe 3O 4@MXene composite nanofiltration membrane for heavy metal ions removal from wastewater[J]. Polymers for Advanced Technologies, 2021, 32(3):1000-1010. doi: 10.1002/pat.5148
|
3 |
KHATAMI M, IRAVANI S. MXenes and MXene-based materials for the removal of water pollutants:Challenges and opportunities[J]. Comments on Inorganic Chemistry, 2021, 41:213-248. doi: 10.1080/02603594.2021.1922396
|
4 |
ZHAN Xiaoxue, SI Chen, ZHOU Jian,et al. MXene and MXene-based composites:Synthesis,properties and environment-related applications[J]. Nanoscale Horizons, 2020, 5(2):235-258. doi: 10.1039/c9nh00571d
|
5 |
NAGUIB M, KURTOGLU M, PRESSER V,et al. Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2 [J]. Advanced Materials, 2011, 23(37):4248-4253. doi: 10.1002/adma.201102306
|
6 |
JUN B M, JANG M, PARK C M,et al. Selective adsorption of Cs + by MXene(Ti 3C 2T x ) from model low-level radioactive wastewater[J]. Nuclear Engineering and Technology, 2020, 52(6):1201-1207. doi: 10.1016/j.net.2019.11.020
|
7 |
CAO Yang, FANG Yu, LEI Xianyu,et al. Fabrication of novel CuFe 2O 4/MXene hierarchical heterostructures for enhanced photocatalytic degradation of sulfonamides under visible light[J]. Journal of Hazardous Materials, 2020, 387:122021. doi: 10.1016/j.jhazmat.2020.122021
|
8 |
康淳,林延欣,景远聚,等. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10):2239-2253. doi: 10.7536/PC220122
|
|
KANG Chun, LIN Yanxin, JING Yuanju,et al. Preparation and environmental applications of 2D nanomaterial MXenes[J]. Progress in Chemistry, 2022, 34(10):2239-2253. doi: 10.7536/PC220122
|
9 |
HWANG S K, KANG S M, RETHINASABAPATHY M,et al. MXene:An emerging two-dimensional layered material for removal of radioactive pollutants[J]. Chemical Engineering Journal, 2020, 397:125428. doi: 10.1016/j.cej.2020.125428
|
10 |
LIU Ting, LIU Xiaoyan, GRAHAM N,et al. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance[J]. Journal of Membrane Science, 2020, 593:117431. doi: 10.1016/j.memsci.2019.117431
|
11 |
IHSANULLAH I. MXenes(two-dimensional metal carbides) as emerging nanomaterials for water purification:Progress,challenges and prospects[J]. Chemical Engineering Journal, 2020, 388:124340. doi: 10.1016/j.cej.2020.124340
|
12 |
SHAHZAD A, RASOOL K, IQBAL J,et al. MXsorption of mercury:Exceptional reductive behavior of titanium carbide/carbonitride MXenes[J]. Environmental Research, 2022, 205:112532. doi: 10.1016/j.envres.2021.112532
|
13 |
LIAN Qiyu, AHMAD Z U, GANG D D,et al. The effects of carbon disulfide driven functionalization on graphene oxide for enhanced Pb(Ⅱ) adsorption:Investigation of adsorption mechanism[J]. Chemosphere, 2020, 248:126078. doi: 10.1016/j.chemosphere.2020.126078
|
14 |
YANG Sheng, ZHANG Panpan, WANG Faxing,et al. Fluoride-free synthesis of two-dimensional titanium carbide(MXene) using A binary aqueous system[J]. Angewandte Chemie(International Ed. in English), 2018, 57(47):15491-15495. doi: 10.1002/anie.201809662
|
15 |
NAGUIB M, BARSOUM M W, GOGOTSI Y. Ten years of progress in the synthesis and development of MXenes[J]. Advanced Materials, 2021, 33(39):e2103393. doi: 10.1002/adma.202103393
|
16 |
LI Mingjing, SUN Ran, LI Yulu,et al. The 3D porous “celosia” heterogeneous interface engineering of layered double hydroxide and P-doped molybdenum oxide on MXene promotes overall water-splitting[J]. Chemical Engineering Journal, 2022, 431:133941. doi: 10.1016/j.cej.2021.133941
|
17 |
ANASORI B, GOGOTSI Y. Introduction to 2D transition metal carbides and nitrides(MXenes)[M]. Cham:Springer, 2019:3-12. doi: 10.1007/978-3-030-19026-2_1
|
18 |
SZUPLEWSKA A, KULPIŃSKA D, DYBKO A,et al. Future applications of MXenes in biotechnology,nanomedicine,and sensors[J]. Trends in Biotechnology, 2020, 38(3):264-279. doi: 10.1016/j.tibtech.2019.09.001
|
19 |
ZHAO Pin, JIAN Meipeng, ZHANG Qi,et al. A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media:Graphene and GO,MoS 2,MXenes,and 2D MOFs[J]. Journal of Materials Chemistry A, 2019, 7(28):16598-16621. doi: 10.1039/c9ta02935d
|
20 |
LIM K R G, HANDOKO A D, NEMANI S K,et al. Rational design of two-dimensional transition metal carbide/nitride(MXene) hybrids and nanocomposites for catalytic energy storage and conversion[J]. ACS Nano, 2020, 14(9):10834-10864. doi: 10.1021/acsnano.0c05482
|
21 |
GHIDIU M, NAGUIB M, SHI C,et al. Synthesis and characterization of two-dimensional Nb 4C 3(MXene)[J]. Chemical Communications, 2014, 50(67):9517-9520. doi: 10.1039/c4cc03366c
|
22 |
LUKATSKAYA M R, MASHTALIR O, REN Chang e,et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153):1502-1505. doi: 10.1126/science.1241488
|
23 |
HANTANASIRISAKUL K, ALHABEB M, LIPATOV A,et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene[J]. Chemistry of Materials, 2019, 31(8):2941-2951. doi: 10.1021/acs.chemmater.9b00401
|
24 |
|
|
REN Wenjie, TENG Ying. Environmental behavior of graphene and its effect on the transport and fate of pollutants in environment[J]. Chinese Journal of Applied Ecology, 2014, 25(9):2723-2732. doi: 10.13287/j.1001-9332.20140616.003
|
25 |
QUIK J T K, DE KLEIN J J M, KOELMANS A A. Spatially explicit fate modelling of nanomaterials in natural waters[J]. Water Research, 2015, 80:200-208. doi: 10.1016/j.watres.2015.05.025
|
26 |
MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials, 2017, 29(4):1632-1640. doi: 10.1021/acs.chemmater.6b04830
|
27 |
ZHANG C J, PINILLA S, MCEVOY N,et al. Oxidation stability of colloidal two-dimensional titanium carbides(MXenes)[J]. Chemistry of Materials, 2017, 29(11):4848-4856. doi: 10.1021/acs.chemmater.7b00745
|
28 |
卢松花. 水体中共存组分对U(Ⅵ)在钛酸盐材料上的作用机制影响[D]. 合肥:中国科学技术大学,2019.
|
|
LU Songhua. Effects of water coexisting components on the interaction mechanism between U(Ⅵ) and titanate materials[D]. Hefei:University of Science and Technology of China,2019.
|
29 |
WU You, LI Xiaoming, ZHAO Hui,et al. Recent advances in transition metal carbides and nitrides(MXenes):Characteristics,environmental remediation and challenges[J]. Chemical Engineering Journal, 2021, 418:129296. doi: 10.1016/j.cej.2021.129296
|
30 |
LI Jingxiao, DU Yulei, HUO Chengxue,et al. Thermal stability of two-dimensional Ti 2C nanosheets[J]. Ceramics International, 2015, 41(2):2631-2635. doi: 10.1016/j.ceramint.2014.10.070
|
31 |
WANG Kun, ZHOU Youfu, XU Wentao,et al. Fabrication and thermal stability of two-dimensional carbide Ti 3C 2 nanosheets[J]. Ceramics International, 2016, 42(7):8419-8424. doi: 10.1016/j.ceramint.2016.02.059
|
32 |
NAGUIB M, MASHTALIR O, LUKATSKAYA M R,et al. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes[J]. Chemical Communications, 2014, 50(56):7420-7423. doi: 10.1039/c4cc01646g
|
33 |
WU Xianhong, WANG Zhiyu, YU Mengzhou,et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials, 2017, 29(24):1607017. doi: 10.1002/adma.201770173
|
34 |
WU Yuting, NIE Ping, WANG Jiang,et al. Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance[J]. ACS Applied Materials & Interfaces, 2017, 9(45):39610-39617. doi: 10.1021/acsami.7b12155
|
35 |
PENG Jiahe, CHEN Xingzhu, ONG W J,et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites:Insights into electro- and photocatalysis[J]. Chem, 2019, 5(1):18-50. doi: 10.1016/j.chempr.2018.08.037
|
36 |
|
|
|
37 |
BAI Yuelei, ZHOU Kun, SRIKANTH N,et al. Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers:A first-principles study[J]. RSC Advances, 2016, 6(42):35731-35739. doi: 10.1039/c6ra03090d
|
38 |
JAFFARI Z H, ABUABDOU S M A, NG D Q,et al. Insight into two-dimensional MXenes for environmental applications:Recent progress,challenges,and prospects[J]. FlatChem, 2021, 28:100256. doi: 10.1016/j.flatc.2021.100256
|
39 |
XIU Ziyuan, GUO Meijun, ZHAO Tianyu,et al. Recent advances in Ti 3+ self-doped nanostructured TiO 2 visible light photocatalysts for environmental and energy applications[J]. Chemical Engineering Journal, 2020, 382:123011. doi: 10.1016/j.cej.2019.123011
|
40 |
NAGUIB M, SAITO T, LAI S,et al. Ti 3C 2T x (MXene)-polyacrylamide nanocomposite films[J]. RSC Advances, 2016, 6(76):72069-72073. doi: 10.1039/c6ra10384g
|
41 |
OTHMAN Z, MACKEY H R, MAHMOUD K A. A critical overview of MXenes adsorption behavior toward heavy metals[J]. Chemosphere, 2022, 295:133849. doi: 10.1016/j.chemosphere.2022.133849
|
42 |
FARD A K, MCKAY G, CHAMOUN R,et al. Barium removal from synthetic natural and produced water using MXene as two dimensional(2-D) nanosheet adsorbent[J]. Chemical Engineering Journal, 2017, 317:331-342. doi: 10.1016/j.cej.2017.02.090
|
43 |
YING Yulong, LIU Yu, WANG Xinyu,et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(Ⅵ) from water[J]. ACS Applied Materials & Interfaces, 2015, 7(3):1795-1803. doi: 10.1021/am5074722
|
44 |
ZHANG Pengcheng, WANG Lin, DU Ke,et al. Effective removal of U(Ⅵ) and Eu(Ⅲ) by carboxyl functionalized MXene nanosheets[J]. Journal of Hazardous Materials, 2020, 396:122731. doi: 10.1016/j.jhazmat.2020.122731
|
45 |
NAGUIB M, MASHTALIR O, CARLE J,et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2):1322-1331. doi: 10.1021/nn204153h
|
46 |
NAGUIB M, MOCHALIN V N, BARSOUM M W,et al. MXenes:A new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7):992-1005. doi: 10.1002/adma.201304138
|
47 |
SANG Xiahan, XIE Yu, LIN Mingwei,et al. Atomic defects in monolayer titanium carbide(Ti 3C 2T x ) MXene[J]. ACS Nano, 2016, 10(10):9193-9200. doi: 10.1021/acsnano.6b05240
|
48 |
GHIDIU M, LUKATSKAYA M R, ZHAO Mengqiang,et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516:78-81. doi: 10.1038/nature13970
|
49 |
LIU Fanfan, ZHOU Aiguo, CHEN Jinfeng,et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties[J]. Applied Surface Science,2017,416:781-789.
|
50 |
KARLSSON L H, BIRCH J, HALIM J,et al. Atomically resolved structural and chemical investigation of single MXene sheets[J]. Nano Letters, 2015, 15(8):4955-4960. doi: 10.1021/acs.nanolett.5b00737
|
51 |
LI Youbing, SHAO Hui, LIN Zifeng,et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19:894-899. doi: 10.1038/s41563-020-0657-0
|
52 |
NAGUIB M, UNOCIC R R, ARMSTRONG B L,et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”[J]. Dalton Transactions, 2015, 44(20):9353-9358. doi: 10.1039/c5dt01247c
|
53 |
SONG Menglin, PANG S Y, GUO Feng,et al. Fluoride-free 2D niobium carbide MXenes as stable and biocompatible nanoplatforms for electrochemical biosensors with ultrahigh sensitivity[J]. Advanced Science, 2020, 7(24):2001546. doi: 10.1002/advs.202001546
|
54 |
张诗洋. 二维层状复合材料的制备及其在水处理中的应用研究[D]. 广州:广东工业大学,2020.
|
|
ZHANG Shiyang. Study on preparation of two-dimensional layered composites and their applications in water treatment[D]. Guangzhou:Guangdong University of Technology,2020.
|
55 |
HALOUANE F,OZ Y, MEZIANE D,et al. Magnetic reduced graphene oxide loaded hydrogels:Highly versatile and efficient adsorbents for dyes and selective Cr(Ⅵ) ions removal[J]. Journal of Colloid and Interface Science, 2017, 507:360-369. doi: 10.1016/j.jcis.2017.07.075
|
56 |
|
|
HU Junyi, LI Shiyou, HE Junqin,et al. Research progress of new two-dimensional MXene materials for heavy metals adsorption[J]. Industrial Water Treatment, 2022, 42(6):116-124. doi: 10.19965/j.cnki.iwt.2021-0388
|
57 |
SHEIN I, IVANOVSKII A L. Graphene-like titanium carbides and nitrides Ti n +1C n,Ti n +1N n ( n = 1,2,and 3) from de-intercalated MAX phases:First-principles probing of their structural,electronic properties and relative stability[J]. Computational Materials Science, 2012, 65:104. doi: 10.1016/j.commatsci.2012.07.011
|
58 |
SHAHZAD A, RASOOL K, MIRAN W,et al. Two-dimensional Ti 3C 2T x MXene nanosheets for efficient copper removal from water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12):11481-11488. doi: 10.1021/acssuschemeng.7b02695
|
59 |
|
|
QIN Wenhao, LI Wen, ZHANG Siyuan,et al. Application of Mxene based materials in the field of adsorption of metal ions in wastewater[J]. Applied Chemical Industry, 2023, 52(4):1144-1149. doi: 10.3969/j.issn.1671-3206.2023.04.035
|
60 |
JUN B M,HER N, PARK C M,et al. Effective removal of Pb(Ⅱ) from synthetic wastewater using Ti 3C 2T x MXene[J]. Environmental Science:Water Research & Technology, 2020, 6(1):173-180. doi: 10.1039/c9ew00625g
|
61 |
WANG Shuhao, LIU Yilin, Qiufeng LÜ,et al. Facile preparation of biosurfactant-functionalized Ti 2CT x MXene nanosheets with an enhanced adsorption performance for Pb(Ⅱ) ions[J]. Journal of Molecular Liquids, 2020, 297:111810. doi: 10.1016/j.molliq.2019.111810
|
62 |
DU Yingchao, YU Bo, WEI Lianqi,et al. Efficient removal of Pb(Ⅱ) by Ti 3C 2T x Powder modified with a silane coupling agent[J]. Journal of Materials Science, 2019, 54(20):13283-13297. doi: 10.1007/s10853-019-03814-z
|
63 |
GAN Defu, HUANG Qiang, DOU Jibo,et al. Bioinspired functionalization of MXenes(Ti 3C 2T x ) with amino acids for efficient removal of heavy metal ions[J]. Applied Surface Science, 2020, 504:144603. doi: 10.1016/j.apsusc.2019.144603
|
64 |
王世怡,冯爱虎,李晓燕,等. Fe 3O 4负载Ti 3C 2T x 对Pb(Ⅱ)的吸附性能研究[J]. 无机材料学报, 2023, 38(5):521-531. doi: 10.15541/jim20220627
|
|
WANG Shiyi, FENG Aihu, LI Xiaoyan,et al. Pb(Ⅱ) adsorption process of Fe 3O 4 supported Ti 3C 2T x [J]. Journal of Inorganic Materials, 2023, 38(5):521-531. doi: 10.15541/jim20220627
|
65 |
YANG Guang, HU Xin, LIANG Jie,et al. Surface functionalization of MXene with chitosan through in situ formation of polyimidazoles and its adsorption properties[J]. Journal of Hazardous Materials, 2021, 419:126220. doi: 10.1016/j.jhazmat.2021.126220
|
66 |
GU Pengcheng, XING Jinlu, WEN Tao,et al. Experimental and theoretical calculation investigation on efficient Pb(Ⅱ) adsorption on etched Ti 3AlC 2 nanofibers and nanosheets[J]. Environmental Science:Nano, 2018, 5(4):946-955. doi: 10.1039/c8en00029h
|
67 |
XIE Xiuqiang, CHEN Chi, ZHANG Nan,et al. Microstructure and surface control of MXene films for water purification[J]. Nature Sustainability, 2019, 2:856-862. doi: 10.1038/s41893-019-0373-4
|
68 |
ZHU Zebing, XIANG Mingxue, SHAN Lili,et al. Effect of temperature on methylene blue removal with novel 2D-Magnetism titanium carbide[J]. Journal of Solid State Chemistry, 2019, 280:120989. doi: 10.1016/j.jssc.2019.120989
|
69 |
PENG Qiuming, GUO Jianxin, ZHANG Qingrui,et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide[J]. Journal of the American Chemical Society, 2014, 136(11):4113-4116. doi: 10.1021/ja500506k
|
70 |
ZHENG Wei, ZHANG Peigen, TIAN Wubian,et al. Alkali treated Ti 3C 2T x MXenes and their dye adsorption performance[J]. Materials Chemistry and Physics, 2018, 206:270-276. doi: 10.1016/j.matchemphys.2017.12.034
|
71 |
LI Kaikai, ZOU Guodong, JIAO Tifeng,et al. Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 553:105-113. doi: 10.1016/j.colsurfa.2018.05.044
|
72 |
MASHTALIR O, COOK K M, MOCHALIN V N,et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media[J]. Journal of Materials Chemistry A, 2014, 2(35):14334-14338. doi: 10.1039/c4ta02638a
|
73 |
LEI Yuan, CUI Yi, HUANG Qiang,et al. Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue[J]. Ceramics International, 2019, 45(14):17653-17661. doi: 10.1016/j.ceramint.2019.05.331
|
74 |
FENG Yilin, WANG Hui, XU Junhuai,et al. Fabrication of MXene/PEI functionalized sodium alginate aerogel and its excellent adsorption behavior for Cr(Ⅵ) and Congo Red from aqueous solution[J]. Journal of Hazardous Materials, 2021, 416:125777. doi: 10.1016/j.jhazmat.2021.125777
|
75 |
KARTHIKEYAN P, RAMKUMAR K, PANDI K,et al. Effective removal of Cr(Ⅵ) and methyl orange from the aqueous environment using two-dimensional(2D) Ti 3C 2T x MXene nanosheets[J]. Ceramics International, 2021, 47(3):3692-3698. doi: 10.1016/j.ceramint.2020.09.221
|
76 |
WU Zhengguo, DENG Weijie, TANG Shuwei,et al. Pod-inspired MXene/porous carbon microspheres with ultrahigh adsorption capacity towards crystal violet[J]. Chemical Engineering Journal, 2021, 426:130776. doi: 10.1016/j.cej.2021.130776
|
77 |
JUN B M,HEO J, TAHERI-QAZVINI N,et al. Adsorption of selected dyes on Ti 3C 2T x MXene and Al-based metal-organic framework[J]. Ceramics International, 2020, 46(3):2960-2968. doi: 10.1016/j.ceramint.2019.09.293
|
78 |
SOLANGI N H, KARRI R R, MUBARAK N M,et al. Emerging 2D MXene-based adsorbents for hazardous pollutants removal[J]. Desalination, 2023, 549:116314. doi: 10.1016/j.desal.2022.116314
|
79 |
WANG Lin, SONG Huan, YUAN Liyong,et al. Efficient U(Ⅵ) reduction and sequestration by Ti 2CT x MXene[J]. Environmental Science & Technology, 2018, 52(18):10748-10756. doi: 10.1021/acs.est.8b03711
|
80 |
LI Shuangxiao, WANG Lin, PENG Jing,et al. Efficient thorium(Ⅳ) removal by two-dimensional Ti 2CT x MXene from aqueous solution[J]. Chemical Engineering Journal, 2019, 366:192-199. doi: 10.1016/j.cej.2019.02.056
|
81 |
VERGER L, XU Chuan, NATU V,et al. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides[J]. Current Opinion in Solid State and Materials Science, 2019, 23(3):149-163. doi: 10.1016/j.cossms.2019.02.001
|
82 |
WANG Lin, TAO Wuqing, YUAN Liyong,et al. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment[J]. Chemical Communications, 2017, 53(89):12084-12087. doi: 10.1039/c7cc06740b
|
83 |
RASOOL K, PANDEY R P, RASHEED P A,et al. Water treatment and environmental remediation applications of two-dimensional metal carbides(MXenes)[J]. Materials Today, 2019, 30:80-102. doi: 10.1016/j.mattod.2019.05.017
|
84 |
MU Wanjun, DU Shenzhen, LI Xingliang,et al. Removal of radioactive palladium based on novel 2D titanium carbides[J]. Chemical Engineering Journal, 2019, 358:283-290. doi: 10.1016/j.cej.2018.10.010
|
85 |
ZHANG Yujuan, LAN Jianhui, WANG Lin,et al. Adsorption of uranyl species on hydroxylated titanium carbide nanosheet:A first-principles study[J]. Journal of Hazardous Materials, 2016, 308:402-410. doi: 10.1016/j.jhazmat.2016.01.053
|
86 |
KHAN A R, HUSNAIN S M, SHAHZAD F,et al. Two-dimensional transition metal carbide(Ti 3C 2T x ) as an efficient adsorbent to remove cesium(Cs +)[J]. Dalton Transactions, 2019, 48(31):11803-11812. doi: 10.1039/c9dt01965k
|
87 |
RETHINASABAPATHY M, HWANG S K, KANG S M,et al. Amino-functionalized POSS nanocage-intercalated titanium carbide(Ti 3C 2T x ) MXene stacks for efficient cesium and strontium radionuclide sequestration[J]. Journal of Hazardous Materials, 2021, 418:126315. doi: 10.1016/j.jhazmat.2021.126315
|
88 |
JUN B M, PARK C M,HEO J,et al. Adsorption of Ba 2+ and Sr 2+ on Ti 3C 2T x MXene in model fracking wastewater[J]. Journal of Environmental Management, 2020, 256:109940. doi: 10.1016/j.jenvman.2019.109940
|
89 |
MANGLA D, SHARMA A,et al. Critical review on adsorptive removal of antibiotics:Present situation,challenges and future perspective[J]. Journal of Hazardous Materials, 2022, 425:127946. doi: 10.1016/j.jhazmat.2021.127946
|
90 |
|
|
SU Xiaohuan. Research on antibiotics migration-transportation and hazardous in aquatic environment[J]. Guangzhou Chemical Industry, 2015, 43(5):156-158. doi: 10.3969/j.issn.1001-9677.2015.05.057
|
91 |
刘鹏霄,王旭,冯玲. 自然水环境中抗生素的污染现状、来源及危害研究进展[J]. 环境工程,2020,38(5):36-42.
|
|
LIU Pengxiao, WANG Xu, FENG Ling. Occurrences,resources and risk of antibiotics in aquatic environment:A review[J]. Environmental Engineering,2020,38(5):36-42.
|
92 |
KIM S, GHOLAMIRAD F, YU Miao,et al. Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti 3C 2T x MXene[J]. Chemical Engineering Journal, 2021, 406:126789. doi: 10.1016/j.cej.2020.126789
|
93 |
GHANI A A, SHAHZAD A, MOZTAHIDA M,et al. Adsorption and electrochemical regeneration of intercalated Ti 3C 2T x MXene for the removal of ciprofloxacin from wastewater[J]. Chemical Engineering Journal, 2021, 421:127780. doi: 10.1016/j.cej.2020.127780
|
94 |
LUO Ruichen, ZHANG Wen, HU Xin,et al. Preparation of sodium ligninsulfonate functionalized MXene using hexachlorocyclotriphosphazene as linkage and its adsorption applications[J]. Applied Surface Science, 2022, 602:154197. doi: 10.1016/j.apsusc.2022.154197
|
95 |
Xuan DAO, HAO Hongxun, BI Jingtao,et al. Surface complexation enhanced adsorption of tetracycline by ALK-MXene[J]. Industrial & Engineering Chemistry Research, 2022, 61(17):6028-6036. doi: 10.1021/acs.iecr.2c00037
|
96 |
SUKIDPANEENID S, CHAWENGKIJWANICH C, POKHUM C,et al. Multi-function adsorbent-photocatalyst MXene-TiO 2 composites for removal of enrofloxacin antibiotic from water[J]. Journal of Environmental Sciences(China), 2023, 124:414-428. doi: 10.1016/j.jes.2021.09.042
|
97 |
LI Zhongkun, WEI Yanying, GAO Xue,et al. Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets[J]. Angewandte Chemie International Edition, 2020, 59(24):9751-9756. doi: 10.1002/anie.202002935
|
98 |
张立屹,杨朝美,曾广勇. 二维MXene材料在油水分离领域的研究进展[J]. 工业水处理,2023,43(5):34-43.
|
|
ZHANG Liyi, YANG Zhaomei, ZENG Guangyong. Research progress of two-dimensional MXene materials in the field of oil-water separation[J]. Industrial Water Treatment,2023,43(5):34-43.
|
99 |
SHAHZAD A, RASOOL K, MIRAN W,et al. Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite[J]. Journal of Hazardous Materials, 2018, 344:811-818. doi: 10.1016/j.jhazmat.2017.11.026
|