1 |
2022年中国生态环境状况公报(摘录)[J]. 环境保护,2023,51(S2):64-81.
|
|
Bulletin on ecological environment in China in 2022 (excerpt)[J]. Environmental Protection,2023,51(S2):64-81.
|
2 |
RECEPOGLU Y K, GOREN A Y, OROOJI Y,et al. Carbonaceous materials for removal and recovery of phosphate species:Limitations,successes and future improvement[J]. Chemosphere, 2022, 287(Pt 2):132177. doi: 10.1016/j.chemosphere.2021.132177
|
3 |
YU Chaoqing, HUANG Xiao, CHEN Han,et al. Managing nitrogen to restore water quality in China[J]. Nature, 2019, 567(7749):516-520. doi: 10.1038/s41586-019-1001-1
|
4 |
罗凡,李浩,徐浩,等. 环境敏感地区城市污水处理厂超深度除磷运行现状及潜力分析[J]. 给水排水,2023,59(9):29-34.
|
|
LUO Fan, LI Hao, XU Hao,et al. Analysis of ultra advanced phosphorus removal situation and potential in municipal wastewater treatment plants in environmentally sensitive area[J]. Water & Wastewater Engineering,2023,59(9):29-34.
|
5 |
SURESH KUMAR P, EJERSSA W W, WEGENER C C,et al. Understanding and improving the reusability of phosphate adsorbents for wastewater effluent polishing[J]. Water Research, 2018, 145:365-374. doi: 10.1016/j.watres.2018.08.040
|
6 |
GAO Jiong, SONG Jie, YE Jinshao,et al. Comparative toxicity reduction potential of UV/sodium percarbonate and UV/hydrogen peroxide treatments for bisphenol A in water:An integrated analysis using chemical,computational,biological,and metabolomic approaches[J]. Water Research, 2021, 190:116755. doi: 10.1016/j.watres.2020.116755
|
7 |
DANIS T G, ALBANIS T A, PETRAKIS D E,et al. Removal of chlorinated phenols from aqueous solutions by adsorption on alumina pillared clays and mesoporous alumina aluminum phosphates[J]. Water Research, 1998, 32(2):295-302. doi: 10.1016/s0043-1354(97)00206-6
|
8 |
YANG Hui, BRADLEY S J, WU Xin,et al. General synthetic strategy for libraries of supported multicomponent metal nanoparticles[J]. ACS Nano, 2018, 12(5):4594-4604. doi: 10.1021/acsnano.8b01022
|
9 |
PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Re-use of waste red mud:Production of a functional iron oxide adsorbent for removal of phosphorous[J]. Journal of Water Process Engineering, 2018, 25:138-148. doi: 10.1016/j.jwpe.2018.07.006
|
10 |
XU Rui, ZHANG Meiyi, MORTIMER R J G,et al. Enhanced phosphorus locking by novel lanthanum/aluminum-hydroxide composite:Implications for eutrophication control[J]. Environmental Science & Technology, 2017, 51(6):3418-3425. doi: 10.1021/acs.est.6b05623
|
11 |
ZHOU Jizhi, XU ZHI ping, QIAO Shizhang,et al. Enhanced removal of triphosphate by MgCaFe-Cl-LDH:Synergism of precipitation with intercalation and surface uptake[J]. Journal of Hazardous Materials, 2011, 189(1/2):586-594. doi: 10.1016/j.jhazmat.2011.02.078
|
12 |
LIU Ruiting, CHI Lina, WANG Xinze,et al. Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs[J]. Chemical Engineering Journal, 2019, 357:159-168. doi: 10.1016/j.cej.2018.09.122
|
13 |
徐丽,徐子祥. 沸石的改性工艺及其吸附除磷特性研究[J]. 工业水处理,2021,41(9):135-139.
|
|
XU Li, XU Zixiang. Modification process of zeolite and its phosphorus adsorption characteristics[J]. Industrial Water Treatment,2021,41(9):135-139.
|
14 |
SHIN E W, HAN J S, JANG M,et al. Phosphate adsorption on aluminum-impregnated mesoporous silicates:Surface structure and behavior of adsorbents[J]. Environmental Science & Technology, 2004, 38(3):912-917. doi: 10.1021/es030488e
|
15 |
WU B, WAN J, ZHANG Y,et al. Selective phosphate removal from water and wastewater using sorption:Process fundamentals and removal mechanisms[J]. Environ Sci Technol, 2020, 54(1):50-66. doi: 10.1021/acs.est.9b05569
|
16 |
DAI Lichun, TAN Furong, LI Hong,et al. Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal[J]. Journal of Environmental Management, 2017, 198:70-74. doi: 10.1016/j.jenvman.2017.04.057
|
17 |
JU Xiaoqiu, HOU Jifei, TANG Yuqiong,et al. ZrO 2 nanoparticles confined in CMK-3 as highly effective sorbent for phosphate adsorption[J]. Microporous and Mesoporous Materials, 2016, 230:188-195. doi: 10.1016/j.micromeso.2016.05.002
|
18 |
ADIL S, KIM J O. Enhanced adsorption performance of a Cu/Ni-MXene composite for phosphate recovery and removal of Cr(Ⅵ) from aqueous solutions[J]. Separation and Purification Technology, 2023, 326:124725. doi: 10.1016/j.seppur.2023.124725
|
19 |
BACELO H, PINTOR A M A, SANTOS S C R,et al. Performance and prospects of different adsorbents for phosphorus uptake and recovery from water[J]. Chemical Engineering Journal, 2020, 381:122566. doi: 10.1016/j.cej.2019.122566
|
20 |
SONG Laizhou, HUO Jingbo, WANG Xiuli,et al. Phosphate adsorption by a Cu(Ⅱ)-loaded polyethersulfone-type metal affinity membrane with the presence of coexistent ions[J]. Chemical Engineering Journal, 2016, 284:182-193. doi: 10.1016/j.cej.2015.08.146
|
21 |
LIU Ruiting, CHI Lina, WANG Xinze,et al. Review of metal(hydr)oxide and other adsorptive materials for phosphate removal from water[J]. Journal of Environmental Chemical Engineering, 2018, 6(4):5269-5286. doi: 10.1016/j.jece.2018.08.008
|
22 |
PAN Bingcai, HAN Feichao, NIE Guangze,et al. New strategy to enhance phosphate removal from water by hydrous manganese oxide[J]. Environmental Science & Technology, 2014, 48(9):5101-5107. doi: 10.1021/es5004044
|
23 |
LIU Jing, WANG Ge, LU Li,et al. Facile shape-controlled synthesis of lanthanum oxide with different hierarchical micro/nanostructures for antibacterial activity based on phosphate removal[J]. RSC Advances, 2017, 7(65):40965-40972. doi: 10.1039/c7ra07521a
|
24 |
陈铭楷,姜应和,程润喜,等. Zn-Al-La-LDHs改性膨润土对富营养化湖泊中磷的锁定效果[J]. 环境工程学报,2022,16(6):1823-1832.
|
|
CHEN Mingkai, JIANG Yinghe, CHENG Runxi,et al. Locking effect of phosphorus in eutrophic lakes by bentonite/Zn-Al-La-LDHs[J]. Chinese Journal of Environmental Engineering,2022,16(6):1823-1832.
|
25 |
GUPTA N K,BAE J, KIM S,et al. Fabrication of Zn-MOF/ZnO nanocomposites for room temperature H 2S removal:Adsorption,regeneration,and mechanism[J]. Chemosphere, 2021, 274:129789. doi: 10.1016/j.chemosphere.2021.129789
|
26 |
LI Mohua, LIU Yanbiao, LI Fang,et al. Defect-rich hierarchical porous UiO-66(Zr) for tunable phosphate removal[J]. Environmental Science & Technology,2021,55(19):13209-13218.
|
27 |
COPETTI D, FINSTERLE K, MARZIALI L,et al. Eutrophication management in surface waters using lanthanum modified bentonite:A review[J]. Water Research, 2016, 97:162-174. doi: 10.1016/j.watres.2015.11.056
|
28 |
XU Qinyuan, CHEN Zhongbing, WU Zhengsong,et al. Novel lanthanum doped biochars derived from lignocellulosic wastes for efficient phosphate removal and regeneration[J]. Bioresource Technology, 2019, 289:121600. doi: 10.1016/j.biortech.2019.121600
|
29 |
HE Zexiang, HUANG Deshun, YUE Guozong,et al. Ca 2+ induced 3D porous MXene gel for continuous removal of phosphate and uranium[J]. Applied Surface Science, 2021, 570:150804. doi: 10.1016/j.apsusc.2021.150804
|
30 |
PAN Bingcai, XU Jingsheng, WU Bing,et al. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles[J]. Environmental Science & Technology, 2013, 47(16):9347-9354. doi: 10.1021/es401710q
|
31 |
JIA Xiuxiu, WANG Huaisheng, LI Yongtao,et al. Separable lanthanum-based porous PAN nanofiber membrane for effective aqueous phosphate removal[J]. Chemical Engineering Journal, 2022, 433:133538. doi: 10.1016/j.cej.2021.133538
|
32 |
WANG Xiaoxing, LIU Lu, LI Qifeng,et al. Nitrogen-rich based conjugated microporous polymers for highly efficient adsorption and removal of COVID-19 antiviral drug chloroquine phosphate from environmental waters[J]. Separation and Purification Technology, 2023, 305:122517. doi: 10.1016/j.seppur.2022.122517
|
33 |
LIU Benhong, LIU Lei, LI Wei. Effective removal of phosphorus from eutrophic water by using cement[J]. Environmental Research, 2020, 183:109218. doi: 10.1016/j.envres.2020.109218
|
34 |
JIANG Shoupei, WANG Jingxuan, QIAO Sen,et al. Phosphate recovery from aqueous solution through adsorption by magnesium modified multi-walled carbon nanotubes[J]. Science of the Total Environment, 2021, 796:148907. doi: 10.1016/j.scitotenv.2021.148907
|
35 |
WANG Ke, XING Zipeng, MENG Du,et al. Hollow MoSe 2@Bi 2S 3/CdS core-shell nanostructure as dual Z-scheme heterojunctions with enhanced full spectrum photocatalytic-photothermal performance[J]. Applied Catalysis B:Environmental, 2021, 281:119482. doi: 10.1016/j.apcatb.2020.119482
|
36 |
朱艳,肖清波,奚永兰,等. 改性生物炭制备条件对磷吸附性能的影响[J]. 生态环境学报,2020,29(9):1897-1903.
|
|
ZHU Yan, XIAO Qingbo, XI Yonglan,et al. Effect of preparation conditions on the phosphorus adsorption capacities of modified biochar[J]. Ecology and Environmental Sciences,2020,29(9):1897-1903.
|
37 |
游凯,封磊,范立维,等. 磁铁锆改性牡蛎壳对水体磷的控释行为研究[J]. 环境科学学报,2020,40(7):2486-2495.
|
|
YOU Kai, FENG Lei, FAN Liwei,et al. The controlled release of phosphorus in water by magnet zirconium modified oyster shell[J]. Acta Scientiae Circumstantiae,2020,40(7):2486-2495.
|
38 |
李歌,马子然,闾菲,等. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J/OL]. 材料导报. [2024-11-28].
|
|
LI Ge, MA Ziran, Fei LÜ,et al. Advances in the application of machine learning in electrocatalytic carbon dioxide reduction[J]. Materials Reports. [2024-11-28].
|
39 |
XIONG Weiping, TONG Jing, YANG Zhaohui,et al. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber:Performance and mechanism[J]. Journal of Colloid and Interface Science, 2017, 493:17-23. doi: 10.1016/j.jcis.2017.01.024
|
40 |
SURESH KUMAR P, PROT T, KORVING L,et al. Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption:Importance of mesopores[J]. Chemical Engineering Journal, 2017, 326:231-239. doi: 10.1016/j.cej.2017.05.147
|
41 |
WAN Xia, KHAN M A, WANG Fengyun,et al. Facile synthesis of protonated g-C 3N 4 and acid-activated montmorillonite composite with efficient adsorption capacity for PO 4 3- and Pb(Ⅱ)[J]. Chemical Engineering Research and Design, 2019, 152:95-105. doi: 10.1016/j.cherd.2019.09.019
|
42 |
LIAO Taiwan, LI Ting, SU Xiangde,et al. La(OH) 3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal[J]. Bioresource Technology, 2018, 263:207-213. doi: 10.1016/j.biortech.2018.04.108
|
43 |
ALAGHA O, MANZAR M S, ZUBAIR M,et al. Magnetic Mg-Fe/LDH intercalated activated carbon composites for nitrate and phosphate removal from wastewater:Insight into behavior and mechanisms[J]. Nanomaterials, 2020, 10(7):1361. doi: 10.3390/nano10071361
|
44 |
LIU Tao, ZHENG Shourong, YANG Liuyan. Magnetic zirconium-based metal-organic frameworks for selective phosphate adsorption from water[J]. Journal of Colloid and Interface Science, 2019, 552:134-141. doi: 10.1016/j.jcis.2019.05.022
|
45 |
JORDAN M I, MITCHELL T M. Machine learning:Trends,perspectives,and prospects[J]. Science, 2015, 349(6245):255-260. doi: 10.1126/science.aaa8415
|
46 |
KIM B, LEE S, KIM J. Inverse design of porous materials using artificial neural networks[J]. Science Advances, 2020, 6(1):eaax9324. doi: 10.1126/sciadv.aax9324
|
47 |
ZHANG Kai, ZHONG Shifa, ZHANG Huichun. Predicting aqueous adsorption of organic compounds onto biochars,carbon nanotubes,granular activated carbons,and resins with machine learning[J]. Environmental Science & Technology, 2020, 54(11):7008-7018. doi: 10.1021/acs.est.0c02526
|
48 |
CUSTELCEAN R, MOYER B A. Anion separation with metal-organic frameworks[J]. European Journal of Inorganic Chemistry, 2007,2007(10):1321-1340. doi: 10.1002/ejic.200700018
|
49 |
丁子卯,刘子森,邹羿菱云,等. 改性吸附材料选择性吸附除磷研究进展[J]. 净水技术,2022,41(6):7-14.
|
|
DING Zimao, LIU Zisen, ZOU Yilingyun,et al. Research progress of modified adsorption materials on selective adsorption for phosphorus removal[J]. Water Purification Technology,2022,41(6):7-14.
|
50 |
YU Qiangqiang, ZHENG Yangqing, WANG Yangping,et al. Highly selective adsorption of phosphate by pyromellitic acid intercalated ZnAl-LDHs: Assembling hydrogen bond acceptor sites [J]. Chemical Engineering Journal, 2015, 260:809-817. doi: 10.1016/j.cej.2014.09.059
|
51 |
王哲. 几种新型磷吸附剂的制备和性能研究[D]. 上海:上海交通大学,2017.
|
|
WANG Zhe. Preparation and properties of several new phosphorus adsorbents[D]. Shanghai:Shanghai Jiao Tong University,2017.
|
52 |
BAZZICALUPI C, BENCINI A, LIPPOLIS V. Tailoring cyclic polyamines for inorganic/organic phosphate binding[J]. Chemical Society Reviews, 2010, 39(10):3709-3728. doi: 10.1039/b926161n
|
53 |
DÍAZ-ÁLVAREZ M, TURIEL E, MARTÍN-ESTEBAN A. Recent advances and future trends in molecularly imprinted polymers-based sample preparation[J]. Journal of Separation Science, 2023, 46(12):e2300157. doi: 10.1002/jssc.202300157
|
54 |
LIU Zhanchao, WU Weifu, LIU Yan,et al. Preparation of surface anion imprinted polymer by developing a La(Ⅲ)-coordinated 3-methacryloxyethyl-propyl bi-functionalized graphene oxide for phosphate removal[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85:282-290. doi: 10.1016/j.jtice.2018.02.001
|
55 |
PEARSON R G. Hard and soft acids and bases,HSAB,part 1:Fundamental principles[J]. Journal of Chemical Education, 1968, 45(9):581. doi: 10.1021/ed045p581
|
56 |
DUDEV T,LIM C. Competition among metal ions for protein binding sites:Determinants of metal ion selectivity in proteins[J]. Chemical Reviews, 2014, 114(1):538-556. doi: 10.1021/cr4004665
|
57 |
唐朝春,刘名,陈惠民,等. 吸附除磷技术的研究进展[J]. 水处理技术,2014,40(9):1-7.
|
|
TANG Chaochun, LIU Ming, CHEN Huimin,et al. Research progress of phosphorus removal from wastewater by adsorption technology[J]. Technology of Water Treatment,2014,40(9):1-7.
|