1 |
LI S, ZHANG X, HUANG Y. Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water[J]. Journal of Hazardous Materials,2017,321:711-719. doi:10.1016/j.jhazmat.2016.09.065
|
2 |
高品,王宇晖,刘振鸿,等. 水中抗生素药物的迁移分布特征研究进展[J].环境科学与技术,2013,36(7):58-63. doi:10.3969/j.issn.1003-6504.2013.07.012
|
|
GAO Pin, WANG Yuhui, LIU Zhenghong,et al. Transport and distribution of antibiotics in environmental waters:a review[J]. Environmental Science & Technology,2013,36(7):58-63. doi:10.3969/j.issn.1003-6504.2013.07.012
|
3 |
RODRIGUEZ-MOZAZ S R, CHAMORRO S, MARTI E,et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river[J]. Water Research,2015,69(1):234-242. doi:10.1016/j.watres.2014.11.021
|
4 |
TANO K, HANS P B, HENRY B,et al. Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming[J]. Environmental Pollution,2018,241:988-998. doi:10.1016/j.envpol.2018.05.085
|
5 |
LIU X H, LIU Y, LU S Y,et al. Occurrence of typical antibiotics and source analysis based on PCA-MLR model in the East Dongting Lake,China[J]. Ecotoxicology and Environment Safety,2018,163(15):145-152. doi:10.1016/j.ecoenv.2018.07.067
|
6 |
ZHI S L, SHEN S Z, ZHOU J,et al. Systematic analysis of occurrence,density and ecological risks of 45 veterinary antibiotics:Focused on family livestock farms in Erhai Lake basin,Yunnan,China[J]. Environmental Pollution,2020,267:115539. doi:10.1016/j.envpol.2020.115539
|
7 |
DU J, ZHAO H X, WANG Y,et al. Presence and environmental risk assessment of selected antibiotics in coastalwater adjacent to mariculture areas in the Bohai Sea[J]. Ecotoxicology and Environment Safety,2019,177:117-123. doi:10.1016/j.ecoenv.2019.03.075
|
8 |
WANG Z, DU Y, YANG C,et al. Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu,China[J]. Science of the Total Environment,2017,609:1423-1432. doi:10.1016/j.scitotenv.2017.08.009
|
9 |
WANG J W, HONG W, ZHOU X D,et al. Occurrence and risk assessment of antibiotics in the Xi'an section of the Weihe River,northwestern China[J]. Marine Pollutution Bulletin,2019,146:794-800. doi:10.1016/j.marpolbul.2019.07.016
|
10 |
ANH H Q, LE T P Q, LE N D,et al. Antibiotics in surface water of East and Southeast Asian countries:A focused review on contamination status,pollution sources,potential risks,and future perspectives[J]. Science of the Total Environment,2021,764:142865. doi:10.1016/j.scitotenv.2020.142865
|
11 |
徐永刚,宇万太,马强,等.环境中抗生素及其生态毒性效应研究进展[J].生态毒理学报,2015,10(03):11-27. doi:10.7524/AJE.1673-5897.20140811001
|
|
XU Yonggang, YU Wantai, MA Qiang,et al. The antibiotic in environment and its ecotoxicity:A review[J]. Asian Journal of Ecotoxicology,2015,10(03):11-27. doi:10.7524/AJE.1673-5897.20140811001
|
12 |
JIANG J H, WANG G Y. Hazard of sulfonamides and detection technology research progress[J]. IOP Conference Series:Earth and Environmental Science,2017,100(1):012040. doi:10.1088/1755-1315/100/1/012040
|
13 |
ZHANG X B, GUO W S, NGO H H,et al. Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water [J]. Journal of Environment Management,2016,172:193-200. doi:10.1016/j.jenvman.2016.02.038
|
14 |
MIAO J H, WANG F H, CHEN Y J,et al. The adsorption performance of tetracyclines on magnetic graphene oxide:A novel antibiotics absorbent [J].Applied Surface Science,2019,475:549-558. doi:10.1016/j.apsusc.2019.01.036
|
15 |
AYDIN S, AYDIN M E, BEDUK F,et al. Removal of antibiotics from aqueous solution by using magnetic Fe3O4/red mud-nanoparticles[J]. Science of the total environment,2019,670:539-546. doi:10.1016/j.scitotenv.2019.03.205
|
16 |
LAN Q, JIN S, YANG B,et al. Filling polyoxoanions into MIL-101(Fe) for adsorption of organic pollutants with facile and complete visible light photocatalytic decomposition[J]. Molecules,2022,27(11):3404. doi:10.3390/molecules27113404
|
17 |
MICHAEL S G, MICHAEL-KORDATOU I, BERETSOU V G,et al. Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater[J]. Applied Catalysis B:Environmental,2019,244:871-880. doi:10.1016/j.apcatb.2018.12.030
|
18 |
ALONSO J J S, KORI N E, MELIÁN-MARTEL N,et al. Removal of ciprofloxacin from seawater by reverse osmosis[J]. Journal of Environment Management,2018,217:337-345. doi:10.1016/j.jenvman.2018.03.108
|
19 |
PRIYANKARI B, DEBARATI M, SURAJIT D,et al. Development and performance evaluation of a novel CuO/TiO2 ceramic ultrafiltration membrane for ciprofloxacin removal[J]. Materials Chemistry and Physics,2019,229:106-116. doi:10.1016/j.matchemphys.2019.02.094
|
20 |
张剑桥,楼耀尹,叶志隆,等. 混凝前处理对猪场沼液MAP回收时抗生素残留的影响[J].中国环境科学,2018,38(07):2483-2489. doi:10.3969/j.issn.1000-6923.2018.07.012
|
|
ZHANG Jianqiao, LOU Yaoyin, YE Zhilong,et al. Influence of coagulation pretreatment on the residue of veterinary antibiotics in the process of struvite recovery from swine wastewater[J]. China Environmental Science,2018,38(07):2483-2489. doi:10.3969/j.issn.1000-6923.2018.07.012
|
21 |
HE Z, WANG X, LUO Y,et al. Effects of suspended particulate matter from natural lakes in conjunction with coagulation to tetracycline removal from water[J]. Chemosphere,2021,277:130327. doi:10.1016/j.chemosphere.2021.130327
|
22 |
de JESUS GAFFNEY V, CARDOSO V V, BENOLIEL M J,et al. Chlorination and oxidation of sulfonamides by free chlorine:Identification and behaviour of reaction products by UPLC-MS/MS[J]. Journal of Environment Management,2016,166:466-477. doi:10.1016/j.jenvman.2015.10.048
|
23 |
DING J Q, HE Y, WANG P C,et al. Performances of simultaneous removal of trace-level of loxacin and sulfamethazine by different ozonation-based treatments[J]. Journal of Cleaner Production,2020,277:124120. doi:10.1016/j.jclepro.2020.124120
|
24 |
ELANDER R P. Industrial production of β-lactam antibiotics[J]. Applied microbiology and biotechnology,2003,61(5):385-392. doi:10.1007/s00253-003-1274-y
|
25 |
敖蒙蒙,刘利,魏健,等. β-内酰胺类抗生素臭氧氧化机理与降解途径[J].土木与环境工程学报,2021,43(6):187-196. doi:10.11835/j.issn.2096-6717.2021.076
|
|
AO Mengmeng, LIU Li, WEI Jian,et al. Ozone oxidation mechanism and degradation pathway of β-lactam antibiotics[J].Journal of Civil and Environmental Engineering,2021,43(6):187-196. doi:10.11835/j.issn.2096-6717.2021.076
|
26 |
DE SOUZA SANTOS L V, MEIRELES A M, LANGE L C. Degradation of antibiotics norfloxacin by Fenton,UV and UV/H2O2 [J]. Journal of Environmental Management,2015,154:8-12. doi:10.1016/j.jenvman.2015.02.021
|
27 |
WANG C, YU G C, CHEN H,et al. Degradation of norfloxacin by hydroxylamine enhanced fenton system:Kinetics,mechanism and degradation pathway[J]. Chemosphere,2021,270:129408. doi:10.1016/j.chemosphere.2020.129408
|
28 |
刘玉灿,董金坤,秦昊,等.水中有机农药的去除方法研究进展[J]. 中国给水排水,2020,36(24):45-53. doi:10.19853/j.zgjsps.1000-4602.2020.24.009
|
|
LIU Yucan, DONG Jinkun, QIN Hao,et al.Research progress on removal of organic pesticides from water[J]. China Water & Wastewater,2020,36(24):45-53. doi:10.19853/j.zgjsps.1000-4602.2020.24.009
|
29 |
FUKAHORI S, FUJIWARA T. Photocatalytic decomposition behavior and reaction pathway ofsulfamethazine antibiotic using TiO2 [J]. Journal of Environment Management,2015,157:103-110. doi:10.1016/j.jenvman.2015.04.002
|
30 |
ESTRADA-FLÓREZ S E, SERNA-GALVIS E A, TORRES-PALMA R A. Photocatalytic vs. sonochemical removal of antibiotics in water:Structure degradability relationship,mineralization,antimicrobial activity,andmatrix effects[J]. Journal of Environmental Chemical Engineering,2020,8:104359. doi:10.1016/j.jece.2020.104359
|
31 |
JOJOA-SIERRA S D, SILVA-AGREDO J, HERRERA-CALDERON E,et al. Elimination of the antibiotic norfloxacin in municipal wastewater,urineand seawater by electrochemical oxidation on IrO2 anodes[J]. Science of the Total Environment,2017,575:1228-1238. doi:10.1016/j.scitotenv.2016.09.201
|
32 |
WANG B B, SHI H H, HABTESELASSIE M Y,et al. Simultaneous removal of multidrug-resistant Salmonella enterica serotype typhimurium,antibiotics and antibiotic resistance genes from water by electrooxidation on a Magnéli phase Ti4O7 anode[J]. Chemical Engineering Journal,2021,407:127134. doi:10.1016/j.cej.2020.127134
|
33 |
SHARMA V K, LIU F, Tolan S,et al. Oxidation of β-lactam antibiotics by ferrate(Ⅵ)[J]. Chemical Engineering Journal,2013,221:446-451. doi:10.1016/j.cej.2013.02.024
|
34 |
WANG G, ZHAO D, KOU F,et al. Removal of norfloxacin by surface Fenton system (MnFe2O4/H2O2):kinetics,mechanism and degradation pathway[J]. Chemical Engineering Journal,2018,351:747-755. doi:10.1016/j.cej.2018.06.033
|
35 |
WANG X C, CHEN Z L, SHEN J M,et al. Effect of carbon source on pollutant removal and microbial community dynamics in treatment of swine wastewater containing antibiotics by aerobic granular sludge[J]. Chemosphere,2020,260:127544. doi:10.1016/j.chemosphere.2020.127544
|
36 |
CHENG D L, HUU H N, GUO W S,et al. Removal process of antibiotics during anaerobic treatment of swine wastewater[J]. Bioresource Technology,2020,300:122707. doi:10.1016/j.biortech.2019.122707
|
37 |
HAN Y F, YANG L Y, CHEN X M,et al. Removal of veterinary antibiotics from swine wastewater using anaerobic and aerobic biodegradation[J]. Science of the Total Environment,2020,709:136094. doi:10.1016/j.scitotenv.2019.136094
|
38 |
ZHANG W, QIU L, GONG A,et al. Isolation and characterization of a high-efficiency erythromycin A-degrading Ochrobactrum sp. strain[J]. Marine pollution bulletin,2017,114(2):896-902. doi:10.1016/j.marpolbul.2016.10.076
|