1 |
|
|
ZHOU Manlu. Problems and countermeasures of surface water detection in environmental monitoring[J]. Chemical Engineering Design Communications, 2020, 46(9): 190-191. doi: 10.3969/j.issn.1003-6490.2020.09.101
|
2 |
CHEN Qian, LIU Chuanqi, LIU Xinying,et al. Magnetite enhances anaerobic digestion of high salinity organic wastewater[J]. Environmental Research, 2020, 189:109884. doi: 10.1016/j.envres.2020.109884
|
3 |
LIU Enyu, LEE L Y,ONG S L,et al. Treatment of industrial brine using capacitive deionization(CDI) towards zero liquid discharge⁃challenges and optimization[J]. Water Research, 2020, 183:116059. doi: 10.1016/j.watres.2020.116059
|
4 |
韦锋涛,贾铭椿,王晓伟,等. 高含盐废水浓缩处理技术研究进展[J]. 现代化工,2019,39(9):21-25.
|
|
WEI Fengtao, JIA Mingchun, WANG Xiaowei,et al. Research progress in concentration treatment technologies for high salinity wastewater[J]. Modern Chemical Industry,2019,39(9):21-25.
|
5 |
HU Jinting, FU Wanyi, NI Fan,et al. An integrated process for the advanced treatment of hypersaline petrochemical wastewater:A pilot study[J]. Water Research, 2020, 182:116019. doi: 10.1016/j.watres.2020.116019
|
6 |
SRIMUK P, SU Xiao, YOON J,et al. Charge⁃transfer materials for electrochemical water desalination,ion separation and the recovery of elements[J]. Nature Reviews Materials, 2020, 5(7):517-538. doi: 10.1038/s41578-020-0193-1
|
7 |
IPPERSIEL D, MONDOR M, LAMARCHE F,et al. Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping[J]. Journal of Environmental Management, 2012, 95:165-169. doi: 10.1016/j.jenvman.2011.05.026
|
8 |
|
|
CHEN Fuqiang, CHI Yongzhi, TIAN Binghui,et al. Research progress in the zero discharge technology for high⁃salt industrial wastewater[J]. Industrial Water Treatment, 2018, 38(8):1-5. doi: 10.11894/1005-829x.2018.38(8).001
|
9 |
SON H S, SHAHZAD M W, GHAFOUR N,et al. Pilot studies on synergetic impacts of energy utilization in hybrid desalination system:Multi⁃effect distillation and adsorption cycle(MED-AD)[J]. Desalination, 2020, 477:114266. doi: 10.1016/j.desal.2019.114266
|
10 |
SI Zetian, HAN Dong, GU Jiming,et al. Exergy analysis of a vacuum membrane distillation system integrated with mechanical vapor recompression for sulfuric acid waste treatment[J]. Applied Thermal Engineering, 2020, 178:115516. doi: 10.1016/j.applthermaleng.2020.115516
|
11 |
LANDSMAN M R, LAWLER D F, KATZ L E,et al. Application of electrodialysis pretreatment to enhance boron removal and reduce fouling during desalination by nanofiltration/reverse osmosis[J]. Desalination, 2020, 491:114563. doi: 10.1016/j.desal.2020.114563
|
12 |
PRAMANIK B K,HAI F I, RODDICK F A,et al. Ultraviolet/persulfate pre⁃treatment for organic fouling mitigation of forward osmosis membrane:Possible application in nutrient mining from dairy wastewater[J]. Separation and Purification Technology, 2019, 217:215-220. doi: 10.1016/j.seppur.2019.02.016
|
13 |
JIANG Longjie, CHEN Liniang, ZHU Liang,et al. Fouling process of membrane distillation for seawater desalination:An especial focus on the thermal⁃effect and concentrating⁃effect during biofouling[J]. Desalination, 2020, 485:114457. doi: 10.1016/j.desal.2020.114457
|
14 |
HAGESTEIJN K F L, JIANG Shanxue, LADEWIG B P. A review of the synthesis and characterization of anion exchange membranes[J]. Journal of Materials Science, 2018, 53(16):11131-11150. doi: 10.1007/s10853-018-2409-y
|
15 |
LIU Peng, ZHENG Yaqi, LIN Shumeng,et al. Reactive microporous copolymers with excellent film⁃forming ability for ion exchan⁃ge membranes[J]. Journal of Power Sources, 2020, 452:227827. doi: 10.1016/j.jpowsour.2020.227827
|
16 |
LU Yao, LIU Yue, LI Na,et al. Sulfonated graphitic carbon nitride nanosheets as proton conductor for constructing long⁃range ionic channels proton exchange membrane[J]. Journal of Membrane Science, 2020, 601:117908. doi: 10.1016/j.memsci.2020.117908
|
17 |
ZHANG Yuan, SRIMUK P, ASLAN M,et al. Polymer ion⁃exchange membranes for capacitive deionization of aqueous media with low and high salt concentration[J]. Desalination, 2020, 479:114331. doi: 10.1016/j.desal.2020.114331
|
18 |
IRFAN M, GE Liang, WANG Yaoming,et al. Hydrophobic side chains impart anion exchange membranes with high monovalent⁃divalent anion selectivity in electrodialysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4):4429-4442. doi: 10.1021/acssuschemeng.8b06426
|
19 |
WANG Xiaoyao, ZHANG Xu, WU Cuiming,et al. Anion exchange membranes with excellent monovalent anion perm⁃selectivity for electrodialysis applications[J]. Chemical Engineering Research and Design, 2020, 158:24-32. doi: 10.1016/j.cherd.2020.03.021
|
20 |
LIAO Junbin, CHEN Quan, PAN Nengxiu,et al. Amphoteric blend ion⁃exchange membranes for separating monovalent and bivalent anions in electrodialysis[J]. Separation and Purification Technology, 2020, 242:116793. doi: 10.1016/j.seppur.2020.116793
|
21 |
TANSEL B, SAGER J, RECTOR T,et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Separation & Purification Technology, 2006, 51(1):40-47. doi: 10.1016/j.seppur.2005.12.020
|
22 |
STENINA I, GOLUBENKO D, NIKONENKO V,et al. Selectivity of transport processes in ion⁃exchange membranes:Relationship with the structure and methods for its improvement[J]. International Journal of Molecular Ences, 2020, 21(15):5517. doi: 10.3390/ijms21155517
|
23 |
FAN Hanqing, HUANG Yuxuan,YIP N Y. Advancing the conductivity⁃permselectivity tradeoff of electrodialysis ion⁃exchange membranes with sulfonated CNT nanocomposites[J]. Journal of Membrane Science, 2020, 610:118259. doi: 10.1016/j.memsci.2020.118259
|
24 |
PAN Jiefeng, DING Jingcheng, TAN Ruiqing,et al. Preparation of a monovalent selective anion exchange membrane through constructing a covalently crosslinked interface by electro⁃deposition of polyethyleneimine[J]. Journal of Membrane Science, 2017, 539:263-272. doi: 10.1016/j.memsci.2017.06.017
|
25 |
DONG Ting, YAO Jingmei, WANG Yi,et al. On the permselectivity of di- and mono⁃valent cations:Influence of applied current density and ionic species concentration[J]. Desalination, 2020, 488:114521. doi: 10.1016/j.desal.2020.114521
|
26 |
|
|
LI Fuqin, JIAO Yanan, ZHU Yunhao,et al. Experimental study on treatment of acidic heavy metal wastewater by electrodialysis of monovalent selective [J]. Industrial Water Treatment, 2020, 40(4):67-70. doi: 10.11894/iwt.2019-0427
|
27 |
CHEN Fuqiang, CHI Yongzhi, ZHANG Mengyi,et al. Removal of heat stable salts from N-methyldiethanolamine wastewater by anion exchange resin coupled three⁃compartment electrodialysis[J]. Separation and Purification Technology, 2020, 242:116777. doi: 10.1016/j.seppur.2020.116777
|
28 |
CHEN Qingbai, WANG Jianyou, LIU Yu,et al. Novel energy⁃efficient electrodialysis system for continuous brackish water desalination:Innovative stack configurations and optimal inflow modes[J]. Water Research, 2020, 179:115847. doi: 10.1016/j.watres.2020.115847
|
29 |
CAI Yuyan, HAN Zhiying, LIN Xiaochang,et al. Study on removal of phosphorus as struvite from synthetic wastewater using a pilot⁃scale electrodialysis system with magnesium anode[J]. Ence of The Total Environment, 2020, 726:138221. doi: 10.1016/j.scitotenv.2020.138221
|
30 |
CAMPIONE A, GURRERI L, CIOFALO M,et al. Electrodialysis for water desalination:A critical assessment of recent developments on process fundamentals,models and applications[J]. Desalination, 2018, 434:121160. doi: 10.1016/j.desal.2017.12.044
|
31 |
HERRERO⁃GONZALEZ M, DIAZ⁃GURIDI P, DOMINGUEZ⁃RAMOS A,et al. Highly concentrated HCl and NaOH from brines using electrodialysis with bipolar membranes[J]. Separation and Purification Technology, 2020, 242:116785. doi: 10.1016/j.seppur.2020.116785
|
32 |
LINDEN N V, BANDINU G L, VERMAAS D A,et al. Bipolar membrane electrodialysis for energetically competitive ammonium removal and dissolved ammonia production[J]. Journal of Cleaner Production, 2020, 259:120788. doi: 10.1016/j.jclepro.2020.120788
|
33 |
MELNIKOV S S, MUGTAMOV O A, ZABOLOTSKY V I,et al. Study of electrodialysis concentration process of inorganic acids and salts for the two⁃stage conversion of salts into acids utilizing bipolar electrodialysis[J]. Separation and Purification Technology, 2020, 235:116198. doi: 10.1016/j.seppur.2019.116198
|
34 |
黄灏宇,叶春松. 双极膜电渗析技术在高盐废水处理中的应用[J]. 水处理技术,2020,46(6):4-8.
|
|
HUANG Haoyu, YE Chunsong. Application of bipolar membrane electrodialysis in the treatment of high⁃salinitywastewater[J]. Technology of Water Treatment,2020,46(6):4-8.
|
35 |
GHYSELBRECHT K, SILVA A, VAN B,et al. Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis[J]. Journal of Environmental Management, 2014, 140:69-75. doi: 10.1016/j.jenvman.2014.03.009
|
36 |
TRAN A T K, MONDAL P, LIN JIUYANG,et al. Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor[J]. Journal of Membrane Science, 2015, 473:118-127. doi: 10.1016/j.memsci.2014.09.006
|
37 |
BUNANI S, ARDA M, KABAY N,et al. Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis(BMED)[J]. Desalination, 2017, 416:10-15. doi: 10.1016/j.desal.2017.04.017
|
38 |
LI Yan, ZHAO Youjing, WANG Huaiyou,et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J]. Desalination, 2019, 468:114081. doi: 10.1016/j.desal.2019.114081
|
39 |
SIEKIERKA A, TOMASZEWSKA B, BRYJAK M,et al. Lithium capturing from geothermal water by hybrid capacitive deioniza⁃tion[J]. Desalination, 2018, 436:8-14. doi: 10.1016/j.desal.2018.02.003
|
40 |
HWANG C W, JEONG M H,YIM Y J,et al. Process design for lithium recovery using bipolar membrane electrodialysis system[J]. Separation and Purification Technology, 2016, 166:34-40. doi: 10.1016/j.seppur.2016.03.013
|
41 |
İPEKÇI D, ALTIOK E, BUNANI S,et al. Effect of acid⁃base solutions used in acid⁃base compartments for simultaneous recovery of lithium and boron from aqueous solution using bipolar membrane electrodialysis(BMED)[J]. Desalination, 2018, 448:69-75. doi: 10.1016/j.desal.2018.10.001
|
42 |
İPEKI D, KABAY N, BUNANI S,et al. Application of heterogeneous ion exchange membranes for simultaneous separation and recovery of lithium and boron from aqueous solution with bipolar membrane electrodialysis(EDBM)[J]. Desalination, 2020, 479:114313. doi: 10.1016/j.desal.2020.114313
|
43 |
YE Wenyuan, LIU Riri, CHEN Xiangyu,et al. Loose nanofiltration⁃based electrodialysis for highly efficient textile wastewater treatment[J]. Journal of Membrane Science, 2020, 608:118182. doi: 10.1016/j.memsci.2020.118182
|
44 |
ZHANG Yufei, LIU Lei, DU Juan,et al. Fracsis:Ion fractionation and metathesis by a NF-ED integrated system to improve water recovery[J]. Journal of Membrane Science, 2017, 523:385-393. doi: 10.1016/j.memsci.2016.09.052
|
45 |
ZHANG Yang, GHYSELBRECHT K, MEESSCHAERT B,et al. Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation[J]. Journal of Membrane Science, 2011, 378(1/2):101-110. doi: 10.1016/j.memsci.2010.10.036
|
46 |
郝亚超,张成凯,李亮,等. 利用电渗析和反渗透耦合处理高盐废水的研究[J].工业水处理,2021,41(3):44-47.
|
|
HAO Yachao, ZHUANG Chengkai, LI Liang,et al. The study on the treatment of high salt wastewater by electrodialysis coupled with reverse osmosis[J]. Industrial Water Treatment,2021,41(3):44-47.
|
47 |
OREN Y, KORNGOLD E, DALTROPHE N,et al. Pilot studies on high recovery BWRO⁃EDR for near zero liquid discharge approa⁃ch[J]. Desalination, 2010, 261(3):321-330. doi: 10.1016/j.desal.2010.06.010
|
48 |
HONG Jingi, ZHANG Bopeng, GLABMAN S,et al. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation:A review[J]. Journal of Membrane Science, 2015, 486:71-88. doi: 10.1016/j.memsci.2015.02.039
|
49 |
LUO Fabao, WANG Yaoming, JIANG Chenxiao,et al. A power free electrodialysis(PFED) for desalination[J]. Desalination, 2017, 404:138-146. doi: 10.1016/j.desal.2016.11.011
|
50 |
WANG Qun, GAO Xueli, WANG Xinyan,et al. Hybrid RED/ED system:Simultaneous osmotic energy recovery and desalination of high⁃salinity wastewater[J]. Desalination, 2017, 405:59-67. doi: 10.1016/j.desal.2016.12.005
|
51 |
YAN Haiyang, XUE Shuai, WU Cuiming, et al. Separation of NaOH and NaAl(OH) 4 in alumina alkaline solution through diffusion dialysis and electrodialysis[J]. Journal of Membrane Science, 2014, 469:436-446. doi: 10.1016/j.memsci.2014.07.002
|
52 |
|
|
WEI Yun, WANG Qian, CONG Wei. The process of salt recovery from lysine ion⁃exchange waste water by diffusion dialysis⁃electrodialysis[J]. The Chinese Journal of Process Engineering, 2019, 19(5):975-981. doi: 10.12034/j.issn.1009-606X.218182
|
53 |
李鹏飞,马军,邓桦,等. 扩散渗析-电渗析集成工艺用于丝素蛋白脱盐[J]. 膜科学与技术,2017,37(6):90-94.
|
|
LI Pengfei, MA Jun, DENG Hua,et al. New desalination process of soluble silk fibroin by diffusion dialysis⁃electrodialysis[J]. Membrane Science and Technology,2017,37(6):90-94.
|
54 |
FLORIAN B, MARTIN W. Efficient concentration of an amino acid using reactive extraction coupled with bipolar electrodialysis[J]. Chemical Engineering & Technology, 2018, 41(12):2298-2305. doi: 10.1002/ceat.201800286
|
55 |
ZHAO Zhongwei, LIU Gui, JIA Hang,et al. Sandwiched liquid⁃membrane electrodialysis:Lithium selective recovery from salt lake brines with high Mg/Li ratio[J]. Journal of Membrane Science, 2020, 596(57):117685. doi: 10.1016/j.memsci.2019.117685
|
56 |
NATASHA C, AMOS G. Justification for community⁃scale photovoltaic⁃powered electrodialysis desalination systems for inland rural villages in India[J]. Desalination, 2014, 352:82-91. doi: 10.1016/j.desal.2014.07.035
|
57 |
XU Haiyang, XU Ji, WANG Liuling,et al. Performance study on a small⁃scale photovoltaic electrodialysis system for desalination[J]. Renewable Energy, 2020, 154:1008-1013. doi: 10.1016/j.renene.2020.03.066
|
58 |
KORNGOLD E, ARONOV L, DALTROPHE L. Electrodialysis of brine solutions discharged from an RO plant[J]. Desalination, 2008, 242(1):215-227. doi: 10.1016/j.desal.2008.04.008
|