1 |
HULLE S W H VAN, VANDEWEYER H J P, MEESSCHAERT B D, et al. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams[J]. Chemical Engineering Journal, 2010, 162(1):1-20. doi: 10.1016/j.cej.2010.05.037
|
2 |
GE Shijian, WANG Shanyun, YANG Xiong, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment:A review[J]. Chemosphere, 2015, 140:85-98. doi: 10.1016/j.chemosphere.2015.02.004
|
3 |
|
|
PENG Yongzhen, SUN Hongwei, YANG Qing. The biochemical reaction mechanism and kinetics of partial nitrification[J]. Acta Scientiae Circumstantiae, 2008, 28(5):817-824. doi: 10.3321/j.issn:0253-2468.2008.05.001
|
4 |
ZART D, SCHMIDT I, BOCK E. Significance of gaseous NO for ammonia oxidation by nitrosomonas eutropha[J]. Antonie Van Leeuwenhoek, 2000, 77(1):49-55. doi: 10.1023/a:1002077726100
|
5 |
何园,胡文革,马得草,等. 艾比湖湿地盐节木根际土壤氨氧化微生物多样性和丰度及其与环境因子的相关性分析[J]. 环境科学学报,2017,37(5):1967-1975.
|
|
HE Yuan, HU Wenge, MA Decao, et al. Diversity and abundance of ammonia‑oxidizing microorganisms in relation to soil environment in rhizosphere soil of Halocnemum strobilaceum in Ebinur Lake wetland[J]. Acta Scientiae Circumstantiae, 2017, 37(5):1967-1975.
|
6 |
Koops H, Purkhold U, Pommerening⁃Roser A, et al. The lithoautotrophic ammonia‑oxidizing bacteria[C]//The prokaryotes: An evolving electronic resource for the microbiological community. New York: Springer‑Verlag, 2003.
|
7 |
KÖNNEKE M, BERNHARD A E, DE LA TORRE J R, et al. Isolation of an autotrophic ammonia‑oxidizing marine archaeon[J]. Nature, 2005, 437(7058):543-546. doi: 10.1038/nature03911
|
8 |
BROCHIER⁃ARMANET C, BOUSSAU B, GRIBALDO S, et al. Mesophilic crenarchaeota:Proposal for a third archaeal Phylum, the Thaumarchaeota[J]. Nature Reviews Microbiology, 2008, 6:245-252. doi: 10.1038/nrmicro1852
|
9 |
PESTER M, SCHLEPER C, WAGNER M. The Thaumarchaeota:An emerging view of their phylogeny and ecophysiology[J]. Current Opinion in Microbiology, 2011, 14(3):300-306. doi: 10.1016/j.mib.2011.04.007
|
10 |
SINTHUSITH N, TERADA A, HAHN M, et al. Identification and quantification of bacteria and Archaea responsible for ammonia oxidation in different activated sludge of full‑scale wastewater treatment plants[J]. Journal of Environmental Science and Heal⁃th, Part A, 2015, 50(2):169-175. doi: 10.1080/10934529.2014.975535
|
11 |
GAO Jingfeng, LUO Xin, WU Guixia, et al. Quantitative analyses of the composition and abundance of ammonia‑oxidizing Archaea and ammonia‑oxidizing bacteria in eight full‑scale biological wastewater treatment plants[J]. Bioresource Technology, 2013, 138:285-296. doi: 10.1016/j.biortech.2013.03.176
|
12 |
PENG Yongzhen, ZHU Guibing. Biological nitrogen removal with nitrification and denitrification via nitrite pathway[J]. Applied Microbiology and Biotechnology, 2006, 73(1):15-26. doi: 10.1007/s00253-006-0534-z
|
13 |
CHAKRABORTY P, RAGHUNADH BABU P V, VUDAMALA K, et al. Mercury speciation in coastal sediments from the central east coast of India by modified BCR method[J]. Marine Pollution Bulletin, 2014, 81(1):282-288. doi: 10.1016/j.marpolbul.2013.12.054
|
14 |
TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7):844-851. doi: 10.1021/ac50043a017
|
15 |
HELLINGA C, SCHELLEN A A J C, MULDER J W, et al. The Sharon process:An innovative method for nitrogen removal from ammonium‑rich waste water[J]. Water Science and Technology, 1998, 37(9):135-142. doi: 10.2166/wst.1998.0350
|
16 |
LÓPEZ⁃PALAU S, SANCHO I, PINTO A, et al. Influence of temperature on the partial nitritation of reject water in a granular sequencing batch reactor[J]. Environmental Technology, 2013, 34(17/18/19/20):2625-2632. doi: 10.1080/09593330.2013.781230
|
17 |
|
|
GONG Youkui, PENG Yongzhen. Effect of temperature variation on short‑cut biological nitrogen removal and nitrous oxide release[J]. Technology of Water Treatment, 2020, 46(8):110-115. doi: 10.16796/j.cnki.1000-3770.2020.08.022
|
18 |
王丽媛,李行,李军. 降温和曝气时长对序批式活性污泥反应器部分亚硝化效能的影响研究[J]. 环境污染与防治,2020,42(11):1355-1358.
|
|
WANG Liyuan, LI Hang, LI Jun. Effects of cooling and aeration time on partial nitritation efficiency of sequential batch activated sludge reactor[J]. Environmental Pollution & Control, 2020, 42(11):1355-1358.
|
19 |
GUO Jianhua, PENG Yongzhen, HUANG Huijun, et al. Short‑ and long‑term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater[J]. Journal of Hazardous Materials, 2010, 179(1/2/3):471-479. doi: 10.1016/j.jhazmat.2010.03.027
|
20 |
PICULELL M, WELANDER P, JÖNSSON K, et al. Evaluating the effect of biofilm thickness on nitrification in moving bed biofilm reactors[J]. Environmental Technology, 2016, 37(6):732-743. doi: 10.1080/09593330.2015.1080308
|
21 |
KOWALSKI M S, DEVLIN T R, DI BIASE A, et al. Controlling cold temperature partial nitritation in moving bed biofilm reactor[J]. Chemosphere, 2019, 227:216-224. doi: 10.1016/j.chemosphere.2019.04.025
|
22 |
LAURENI M, FALÅS P, ROBIN O, et al. Mainstream partial nitritation and anammox:Long‑term process stability and effluent quality at low temperatures[J]. Water Research, 2016, 101:628-639. doi: 10.1016/j.watres.2016.05.005
|
23 |
BIAN Wei, ZHANG Shuyan, ZHANG Yanzhuo, et al. Achieving nitritation in a continuous moving bed biofilm reactor at different temperatures through ratio control[J]. Bioresource Technology, 2017, 226:73-79. doi: 10.1016/j.biortech.2016.12.014
|
24 |
PARK S, BAE W, CHUNG J, et al. Empirical model of the pH dependence of the maximum specific nitrification rate[J]. Process Biochemistry, 2007, 42(12):1671-1676. doi: 10.1016/j.procbio.2007.09.010
|
25 |
PARK S, BAE W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry, 2009, 44(6):631-640. doi: 10.1016/j.procbio.2009.02.002
|
26 |
HE Yuling, TAO Wendong, WANG Ziyuan, et al. Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free‑water surface wetlands[J]. Journal of Environmental Management, 2012, 110:103-109. doi: 10.1016/j.jenvman.2012.06.009
|
27 |
SINHA B, ANNACHHATRE A P. Partial nitrification—Operational parameters and microorganisms involved[J]. Reviews in Environmental Science and Bio/Technology, 2007, 6(4):285-313. doi: 10.1007/s11157-006-9116-x
|
28 |
ANTHONISEN A C, LOEHR R C, PRAKASAM T B, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Water Pollution Control Federation, 1976, 48(5):835-852.
|
29 |
BAE W, BAEK S, CHUNG J, et al. Optimal operational factors for nitrite accumulation in batch reactors[J]. Biodegradation, 2001, 12(5):359-366. doi: 10.1023/a:1014308229656
|
30 |
WANG Qilin, YE Liu, JIANG Guangming, et al. Side‑stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway[J]. Water Research, 2014, 55:245-255. doi: 10.1016/j.watres.2014.02.029
|
31 |
MA Bin, WANG Shanyun, CAO Shenbin, et al. Biological nitrogen removal from sewage via anammox:Recent advances[J]. Bioresource Technology, 2016, 200:981-990. doi: 10.1016/j.biortech.2015.10.074
|
32 |
BLACKBURNE R, YUAN Zhiguo, KELLER J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J]. Biodegradation, 2008, 19(2):303-312. doi: 10.1007/s10532-007-9136-4
|
33 |
TOKUTOMI T. Operation of a nitrite‑type airlift reactor at low DO concentration[J]. Water Science and Technology, 2004, 49(5/6):81-88. doi: 10.2166/wst.2004.0740
|
34 |
HANAKI K, WANTAWIN C, OHGAKI S. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended‑growth reactor[J]. Water Research, 1990, 24(3):297-302. doi: 10.1016/0043-1354(90)90004-p
|
35 |
XU Guangjing, ZHOU Yan, YANG Qin, et al. The challenges of mainstream deammonification process for municipal used water treatment[J]. Applied Microbiology and Biotechnology, 2015, 99(6):2485-2490. doi: 10.1007/s00253-015-6423-6
|
36 |
LIU Guoqiang, WANG Jianmin. Long‑term low DO enriches and shifts nitrifier community in activated sludge[J]. Environmental Science & Technology, 2013, 47(10):5109-5117. doi: 10.1021/es304647y
|
37 |
FITZGERALD C M, CAMEJO P, OSHLAG J Z, et al. Ammonia⁃oxidizing microbial communities in reactors with efficient nitrification at low‑dissolved oxygen[J]. Water Research, 2015, 70:38-51. doi: 10.1016/j.watres.2014.11.041
|
38 |
BLACKBURNE R, VADIVELU V M, YUAN Zhiguo, et al. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter[J]. Water Research, 2007, 41(14):3033-3042. doi: 10.1016/j.watres.2007.01.043
|
39 |
HUANG Zhonghua, GEDALANGA P B, ASVAPATHANAGUL P, et al. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor[J]. Water Research, 2010, 44(15):4351-4358. doi: 10.1016/j.watres.2010.05.037
|
40 |
PARK H D, NOGUERA D R. Nitrospira community composition in nitrifying reactors operated with two different dissolved oxygen levels[J]. Journal of Microbiology and Biotechnology, 2008, 18(8):1470-1474.
|
41 |
PICIOREANU C, PÉREZ J, LOOSDRECHT M C M VAN. Impact of cell cluster size on apparent half‑saturation coefficients for oxygen in nitrifying sludge and biofilms[J]. Water Research, 2016, 106:371-382. doi: 10.1016/j.watres.2016.10.017
|
42 |
MIAO Yuanyuan, PENG Yongzhen, ZHANG Liang, et al. Partial nitrification‑anammox(PNA) treating sewage with intermittent aeration mode:Effect of influent C/N ratios[J]. Chemical Engineering Journal, 2018, 334:664-672. doi: 10.1016/j.cej.2017.10.072
|
43 |
IANNACONE F, DI CAPUA F, GRANATA F, et al. Effect of carbon‑to‑nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor[J]. Journal of Environmental Management, 2019, 250:109518. doi: 10.1016/j.jenvman.2019.109518
|
44 |
LI Jialin, ZHANG Liang, PENG Yongzhen, et al. Effect of low COD/N ratios on stability of single‑stage partial nitritation/anammox(SPN/A) process in a long‑term operation[J]. Bioresource Technology, 2017, 244:192-197. doi: 10.1016/j.biortech.2017.07.127
|
45 |
MOUSAVI S A, IBRAHIM S, AROUA M K. Effect of carbon source on acclimatization of nitrifying bacteria to achieve high‑rate partial nitrification of wastewater with high ammonium concentration[J]. Applied Water Science, 2017, 7(1):165-173. doi: 10.1007/s13201-014-0229-z
|
46 |
孙艺齐, 卞伟, 李军, 等. 15 ℃ SBBR短程硝化快速启动和稳定运行性能[J]. 环境科学, 2019,40(5):2326-2332.
|
|
SUN Yiqi, BIAN Wei, LI Jun, et al. Partial nitrification fast start⁃up and stable performance of 15 ℃ SBBR[J]. Environmental Science, 2019, 40(5): 2326-2332.
|
47 |
DING Fan, LIANG Dongbo, WU Yaodong, et al. Effect of C/N on partial nitrification in an MBBR at low temperature[J]. Environmental Science:Water Research & Technology, 2020, 6(12):3391-3399. doi: 10.1039/d0ew00654h
|
48 |
JIA Li, GUO Jinsong, FANG Fang, et al. Effect of organic carbon on nitrogen conversion and microbial communities in the completely autotrophic nitrogen removal process[J]. Environmental Technology, 2012, 33(10):1141-1149. doi: 10.1080/09593330.2011.610363
|
49 |
HAN M, DE CLIPPELEIR H, AL‑OMARI A, et al. Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2016, 74(2):375-384. doi: 10.2166/wst.2016.202
|
50 |
ERGUDER T H, BOON N, VLAEMINCK S E, et al. Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor[J]. Environmental Science & Technology, 2008, 42(23):8715-8720. doi: 10.1021/es801391u
|
51 |
ORTIZ D I B, THALASSO F, DE MARÍA CUERVO LÓPEZ F, et al. Inhibitory effect of sulfide on the nitrifying respiratory process[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(7):1344-1349. doi: 10.1002/jctb.3982
|
52 |
|
|
CHANG Ze, SUN Ning, LI Zhaoxu, et al. Sulfide‑driven and nitrite‑oxidizing bacteria (NOB) inhibition shortcut nitrification and denitrification biological nitrogen removal technology[J]. Chinese Journal of Environmental Engineering, 2018, 12(5):1416-1423. doi: 10.12030/j.cjee.201710144
|
53 |
STAR W R L VAN DER, DE GRAAF M J VAN, KARTAL B, et al. Response of anaerobic ammonium‑oxidizing bacteria to hydroxylamine[J]. Applied and Environmental Microbiology, 2008, 74(14):4417-4426. doi: 10.1128/aem.00042-08
|
54 |
GONZALEZ‑SILVA B M, JONASSEN K R, BAKKE I, et al. Nitrification at different salinities:Biofilm community composition and physiological plasticity[J]. Water Research, 2016, 95:48-58. doi: 10.1016/j.watres.2016.02.050
|
55 |
MOUSSA M S, SUMANASEKERA D U, IBRAHIM S H, et al. Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers[J]. Water Research, 2006, 40(7):1377-1388. doi: 10.1016/j.watres.2006.01.029
|
56 |
CUI Y W, PENG Y Z, PENG C Y, et al. Achieving biological nitrogen removal via nitrite by salt inhibition[J]. Water Science and Technology, 2006, 53(6):115-122. doi: 10.2166/wst.2006.183
|
57 |
RANDALL C W, BUTH D. Nitrite build⁃up in activated sludge resulting from combined temperature and toxicity effects[J]. Journal of Water Pollution Control Federation, 1984, 56:1045-1049.
|
58 |
HU Zhiqiang, CHANDRAN K, GRASSO D, et al. Comparison of nitrification inhibition by metals in batch and continuous flow reactors[J]. Water Research, 2004, 38(18):3949-3959. doi: 10.1016/j.watres.2004.06.025
|
59 |
LIU Xiaoguang, CHOWDHURY M M I, ZAMAN M, et al. Acute and chronic toxicity of nickel to nitrifiers at different temperatures[J]. Journal of Environmental Sciences, 2019, 82:169-178. doi: 10.1016/j.jes.2019.03.009
|
60 |
OUYANG Fan, ZHAI Hongyan, JI Min, et al. Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge[J]. Journal of Hazardous Materials, 2016, 301:172-178. doi: 10.1016/j.jhazmat.2015.08.039
|
61 |
SHODA M, ISHIKAWA Y. Heterotrophic nitrification and aerobic denitrification of high‑strength ammonium in anaerobically digested sludge by Alcaligenes faecalis strain No. 4[J]. Journal of Bioscience and Bioengineering, 2014, 117(6):737-741. doi: 10.1016/j.jbiosc.2013.11.018
|
62 |
JIANG Cancan, XU Shengjun, WANG Rui, et al. Achieving efficient nitrogen removal from real sewage via nitrite pathway in a continuous nitrogen removal process by combining free nitrous acid sludge treatment and DO control[J]. Water Research, 2019, 161:590-600. doi: 10.1016/j.watres.2019.06.040
|
63 |
GUO Yuanyuan, PENG Yongzhen, WANG Bo, et al. Achieving simultaneous nitrogen removal of low C/N wastewater and external sludge reutilization in a sequencing batch reactor[J]. Chemical Engineering Journal, 2016, 306:925-932. doi: 10.1016/j.cej.2016.07.097
|
64 |
LI Jiayi, DU Qingping, PENG Huangqiang, et al. Optimization of biochemical oxygen demand to total nitrogen ratio for treating landfill leachate in a single‑stage partial nitrification-denitrification system[J]. Journal of Cleaner Production, 2020, 266:121809. doi: 10.1016/j.jclepro.2020.121809
|
65 |
SHENG Binbin, WANG Depeng, LIU Xianrong, et al. Taxonomic and functional variations in the microbial community during the upgrade process of a full‑scale landfill leachate treatment plant—From conventional to partial nitrification-denitrification[J]. Frontiers of Environmental Science & Engineering, 2020, 14(6):1-12. doi: 10.1007/s11783-020-1272-7
|
66 |
SHE Zonglian, ZHAO Linting, ZHANG Xiaoling, et al. Partial nitrification and denitrification in a sequencing batch reactor treating high‑salinity wastewater[J]. Chemical Engineering Journal, 2016, 288:207-215. doi: 10.1016/j.cej.2015.11.102
|
67 |
GILBERT E M, AGRAWAL S, KARST S M, et al. Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater[J]. Environmental Science & Technology, 2014, 48(15):8784-8792. doi: 10.1021/es501649m
|
68 |
GILBERT E M, AGRAWAL S, SCHWARTZ T, et al. Comparing different reactor configurations for partial nitritation/Anammox at low temperatures[J]. Water Research, 2015, 81:92-100. doi: 10.1016/j.watres.2015.05.022
|
69 |
LI Bolin, WANG Yue, LI Jiangtao, et al. The symbiosis of anaerobic ammonium oxidation bacteria and heterotrophic denitrification bacteria in a size‑fractioned single‑stage partial nitrification/anammox reactor[J]. Biochemical Engineering Journal, 2019, 151:107353. doi: 10.1016/j.bej.2019.107353
|
70 |
LUO Jinghuan, CHEN Hui, HAN Xiaoyu, et al. Microbial community structure and biodiversity of size‑fractionated granules in a partial nitritation‑anammox process[J]. FEMS Microbiology Ecology, 2017, 93(6):21-56. doi: 10.1093/femsec/fix021
|
71 |
|
|
DI Fei, SUI Qianwen, CHEN Yanlin, et al. Partial nitritation⁃Anammox process treating magnetic coagulation domestic sewage[J]. China Environmental Science, 2020, 40(11):4712-4720. doi: 10.3969/j.issn.1000-6923.2020.11.009
|
72 |
|
|
ZHANG Lei, SUN Hongji, MU Yingdong, et al. Treatment of ammonia percolate by a combined process of shortcut nitrification and anaerobic ammonium oxidation[J]. Chinese Journal of Environmental Engineering, 2020, 14(11):2989-2998. doi: 10.12030/j.cjee.201911113
|
73 |
ZHANG Jianhua, ZHANG Qiong, LI Xiyao, et al. Rapid start‑up of partial nitritation and simultaneously phosphorus removal (PNSPR) granular sludge reactor treating low‑strength domestic sewage[J]. Bioresource Technology, 2017, 243:660-666. doi: 10.1016/j.biortech.2017.06.129
|
74 |
YUAN Chuansheng, WANG Bo, PENG Yongzhen, et al. Enhanced nutrient removal of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) in a single‑stage anaerobic/micro‑aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen[J]. Chemosphere, 2020, 257:127097. doi: 10.1016/j.chemosphere.2020.127097
|
75 |
CAI Jianming, LIANG Peng, QIU Yong, et al. A mass balance framework to evaluate the new pathways of biological nutrient removal in wastewater treatment[J]. Journal of Water Process Engineering, 2020, 37:101523. doi: 10.1016/j.jwpe.2020.101523
|
76 |
ZHANG Miao, ZHU Chenjie, GAO Jing, et al. Deep‑level nutrient removal and denitrifying phosphorus removal (DPR) potential assessment in a continuous two‑sludge system treating low⁃streng⁃th wastewater:The transition from nitration to nitritation[J]. Science of the Total Environment, 2020, 744:140940. doi: 10.1016/j.scitotenv.2020.140940
|
77 |
吕亮. 基于短程反硝化除磷的ABR-MBR工艺处理生活污水效能研究[D]. 苏州:苏州科技大学,2017.
|
|
Liang LÜ. Study on the efficiency of ABR‑MBR process treating domestic wastewater based on short‑cut denitrifying phosphorus removal[D]. Suzhou:Suzhou University of Science and Technology, 2017.
|
78 |
缪新年,汪倩,郭凯成,等. ABR‑MBR耦合工艺启动及优化反硝化除磷性能[J]. 环境科学,2020,41(9):4150-4160.
|
|
MIAO Xinnian, WANG Qian, GUO Kaicheng, et al. Start‑up and optimization of denitrifying phosphorus removal in ABR‑MBR coupling process[J]. Environmental Science, 2020, 41(9):4150-4160.
|
79 |
LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full⁃scale partial nitritation/anammox experiences: An application survey[J]. Water Research, 2014, 55:292-303. doi: 10.1016/j.watres.2014.02.032
|
80 |
THIRD K A, SLIEKERS A O, KUENEN J G, et al. The CANON system(completely autotrophic nitrogen‑removal over nitrite) under ammonium limitation:Interaction and competition between three groups of bacteria[J]. Systematic and Applied Microbiology, 2001, 24(4):588-596. doi: 10.1078/0723-2020-00077
|
81 |
TOMAR S, GUPTA S K. Symbiosis of denitrification, anammox and anaerobic pathways: An innovative approach for confiscating the major bottlenecks of anammox process[J]. Chemical Engineering Journal, 2017, 313:355-363. doi: 10.1016/j.cej.2016.12.053
|
82 |
DU Rui, PENG Yongzhen, CAO Shenbin, et al. Advanced nitrogen removal with simultaneous Anammox and denitrification in sequencing batch reactor[J]. Bioresource Technology, 2014, 162:316-322. doi: 10.1016/j.biortech.2014.03.041
|
83 |
DOWNING L S, BIBBY K, ESPOSITO K, et al. Pilot‑scale testing of the hybrid membrane biofilm process (HMBP) for total nitrogen removal from municipal wastewater[J]. Proceedings of the Water Environment Federation, 2008, 2008(9):6236-6244. doi: 10.2175/193864708790893440
|
84 |
WETT B, PODMIRSEG S M, GÓMEZ‑BRANDÓN M, et al. Expanding DEMON sidestream deammonification technology towards mainstream application[J]. Water Environment Research:a Research Publication of the Water Environment Federation, 2015, 87(12):2084-2089. doi: 10.2175/106143015x14362865227319
|
85 |
Cao Yeshi, Bee Hong Kwok, Yan Zhou, 等. 新加坡最大回用水处理厂污水短程硝化厌氧氨氧化脱氮工艺[J]. 北京工业大学学报,2015,41(10):1441-1454.
|
|
Cao Yeshi, Hong k b, Yan zhou, et al. Mainstream partial nitritation/anammox nitrogen removal process in the largest water reclamation plant in Singapore[J]. Journal of Beijing University of Technology, 2015, 41(10):1441-1454.
|
86 |
OEHMEN A, LEMOS P C, CARVALHO G, et al. Advances in enhanced biological phosphorus removal:From micro to macro scale[J]. Water Research, 2007, 41(11):2271-2300. doi: 10.1016/j.watres.2007.02.030
|
87 |
MEINHOLD J, ARNOLD E, ISAACS S. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J]. Water Research, 1999, 33(8):1871-1883. doi: 10.1016/s0043-1354(98)00411-4
|
88 |
BARNARD J L, DUNLAP P, STEICHEN M. Rethinking the mechanisms of biological phosphorus removal[J]. Water Environment Research, 2017, 89(11):2043-2054. doi: 10.2175/106143017x15051465919010
|
89 |
RUBIO-RINCÓN F J, LOPEZ‑VAZQUEZ C M, WELLES L, et al. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120:156-164. doi: 10.1016/j.watres.2017.05.001
|
90 |
BORTONE G, MALASPINA F, STANTE L, et al. Biological nitrogen and phosphorus removal in an anaerobic/anoxic sequencing batch reactor with separated biofilm nitrification[J]. Water Science and Technology, 1994, 30(6):303-313. doi: 10.2166/wst.1994.0281
|
91 |
|
|
LING Yunfang, WANG Shuying, WANG Yayi, et al. Analysis on influencing factors of A 2N denitrifying phosphorus and nitrogen removal process[J]. Industrial Water & Wastewater, 2006, 37(2):7-11. doi: 10.3969/j.issn.1009-2455.2006.02.002
|
92 |
GOPALA KRISHNA G V T, KUMAR P, KUMAR P. Treatment of low‑strength soluble wastewater using an anaerobic baffled reactor(ABR)[J]. Journal of Environmental Management, 2009, 90(1):166-176. doi: 10.1016/j.jenvman.2007.08.017
|
93 |
沈耀良,王宝贞. 废水生物处理新技术:理论与应用[M]. 2版. 北京:中国环境科学出版社,2006.
|
94 |
潘家成,缪新年,程诚,等. ABR相分离条件下耦合MBR工艺反硝化除磷可行性研究[J]. 环境工程,2020,38(3):63-68.
|
|
PAN Jiacheng, MIAO Xinnian, CHENG Cheng, et al. Feasibility of phosphorus removal by denitrifying by ABR phase separation and mbr coupling process[J]. Environmental Engineering, 2020, 38(3):63-68.
|