1 |
ZHANG Congcong, ZHAO Lanmei, BAO Mutai,et al. Potential of hydrolyzed polyacrylamide biodegradation to final products through regulating its own nitrogen transformation in different dissolved oxygen systems[J]. Bioresource Technology,2018,256:61-68. doi:10.1016/j.biortech.2018.01.143
doi: 10.1016/j.biortech.2018.01.143
URL
|
2 |
YAN Miao, ZHAO Lanmei, BAO Mutai,et al. Hydrolyzed polyacrylamide biodegradation and mechanism in sequencing batch biofilm reactor[J]. Bioresource Technology,2016,207:315-321. doi:10.1016/j.biortech.2016.01.083
doi: 10.1016/j.biortech.2016.01.083
URL
|
3 |
LU Zhiyang, LIU Wei, BAO Mutai,et al. Oil recovery from polymer-containing oil sludge in oilfield by thermochemical cleaning treatment[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,611:125887. doi:10.1016/j.colsurfa.2020.125887
doi: 10.1016/j.colsurfa.2020.125887
URL
|
4 |
SONG Tianwen, LI Shanshan, YIN Zichao,et al. Hydrolyzed polyacrylamide-containing wastewater treatment using ozone reactor-upflow anaerobic sludge blanket reactor-aerobic biofilm reactor multistage treatment system[J]. Environmental Pollution,2021,269:116111. doi:10.1016/j.envpol.2020.116111
doi: 10.1016/j.envpol.2020.116111
URL
|
5 |
ZHANG Yingying, ZHAO Lanmei, SONG Tianwen,et al. Simultaneous nitrification and denitrification in an aerobic biofilm biosystem with loofah sponges as carriers for biodegrading hydrolyzed polyacrylamide-containing wastewater[J]. Bioprocess and Biosystems Engineering,2020,43(3):529-540. doi:10.1007/s00449-019-02247-x
doi: 10.1007/s00449-019-02247-x
URL
|
6 |
SONG Tianwen, LI Shanshan, JIN Jiafeng,et al. Enhanced hydrolyzed polyacrylamide removal from water by an aerobic biofilm reactor-ozone reactor-aerobic biofilm reactor hybrid treatment system:Performance,key enzymes and functional microorganisms[J]. Bioresource Technology,2019,291:121811. doi:10.1016/j.biortech.2019.121811
doi: 10.1016/j.biortech.2019.121811
URL
|
7 |
DONG Liang, SU Fei, WANG Yongzhong. Treatment of partially hydrolyzed polyacrylamide by mixed bacteria isolated from wastewater[J]. Environmental Progress & Sustainable Energy,2020,39(6):e13445. doi:10.1002/ep.13445
doi: 10.1002/ep.13445
URL
|
8 |
ZHAO Lanmei, ZHANG Congcong, LI Haoshuai,et al. Regulation of different electron acceptors on petroleum hydrocarbon biotransformation to final products in activated sludge biosystems[J]. Bioprocess and Biosystems Engineering,2019,42(4):643-655. doi:10.1007/s00449-019-02070-4
doi: 10.1007/s00449-019-02070-4
URL
|
9 |
ZHAO Lanmei, HAN Dong, YIN Zichao,et al. Biohydrogen and polyhydroxyalkanoate production from original hydrolyzed polyacrylamide-containing wastewater[J]. Bioresource Technology,2019,287:121404. doi:10.1016/j.biortech.2019.121404
doi: 10.1016/j.biortech.2019.121404
URL
|
10 |
SOTO L R, BYRNE E, VAN NIEL E W J,et al. Hydrogen and polyhydroxybutyrate production from wheat straw hydrolysate using Caldicellulosiruptor species and Ralstonia eutropha in a coupled process[J]. Bioresource Technology,2019,272:259-266. doi:10.1016/j.biortech.2018.09.142
doi: 10.1016/j.biortech.2018.09.142
URL
|
11 |
ZHAO Lanmei, ZHANG Congcong, BAO Mutai,et al. Effects of different electron acceptors on the methanogenesis of hydrolyzed polyacrylamide biodegradation in anaerobic activated sludge systems[J]. Bioresource Technology,2018,247:759-768. doi:10.1016/j.biortech.2017.09.135
doi: 10.1016/j.biortech.2017.09.135
URL
|
12 |
SANG Guoliang, PI Yongrui, BAO Mutai,et al. Biodegradation for hydrolyzed polyacrylamide in the anaerobic baffled reactor combined aeration tank[J]. Ecological Engineering,2015,84:121-127. doi:10.1016/j.ecoleng.2015.07.028
doi: 10.1016/j.ecoleng.2015.07.028
URL
|
13 |
桑国良. 厌氧—好氧生物法处理高浓度聚丙烯酰胺污水效能研究[D]. 青岛:中国海洋大学,2015. doi:10.1016/j.cej.2015.01.034
doi: 10.1016/j.cej.2015.01.034
URL
|
|
SANG Guoliang. Treatment of partially hydrolyzed polyacrylamide wastewater by combined anaerobic and aerobic biological processes[D]. Qingdao:Ocean University of China,2015. doi:10.1016/j.cej.2015.01.034
doi: 10.1016/j.cej.2015.01.034
URL
|
14 |
PI Yongrui, ZHENG Zhonghuan, BAO Mutai,et al. Treatment of partially hydrolyzed polyacrylamide wastewater by combined Fenton oxidation and anaerobic biological processes[J]. Chemical Engineering Journal,2015,273:1-6. doi:10.1016/j.cej.2015.01.034
doi: 10.1016/j.cej.2015.01.034
URL
|
15 |
郑忠环. ABR处理含高浓度聚丙烯酰胺污水的效能研究[D]. 青岛:中国海洋大学,2014.
|
|
ZHENG Zhonghuan. Study on treatment of wastewater containing high concentration HPAM by anaerobic baffled reactor[D]. Qingdao:Ocean University of China,2014.
|
16 |
DAI Xiaohu, LUO Fan, ZHANG Dong,et al. Waste-activated sludge fermentation for polyacrylamide biodegradation improved by anaerobic hydrolysis and key microorganisms involved in biological polyacrylamide removal[J]. Scientific Reports,2015,5:11675. doi:10.1038/srep11675
doi: 10.1038/srep11675
URL
|
17 |
ZHANG Lei, SU Fei, WANG Nan,et al. Biodegradability enhancement of hydrolyzed polyacrylamide wastewater by a combined Fenton-SBR treatment process[J]. Bioresource Technology,2019,278:99-107. doi:10.1016/j.biortech.2019.01.074
doi: 10.1016/j.biortech.2019.01.074
URL
|
18 |
MA Lili, HU Ting, LIU Yucheng,et al. Combination of biochar and immobilized bacteria accelerates polyacrylamide biodegradation in soil by both bio-augmentation and bio-stimulation strategies[J]. Journal of Hazardous Materials,2021,405:124086. doi:10.1016/j.jhazmat.2020.124086
doi: 10.1016/j.jhazmat.2020.124086
URL
|
19 |
ZHAO Lanmei, ZHANG Congcong, BAO Mutai,et al. Advanced treatment for actual hydrolyzed polyacrylamide-containing wastewater in a biofilm/activated sludge membrane bioreactor system:Biodegradation and interception[J]. Biochemical Engineering Journal,2019,141:120-130. doi:10.1016/j.bej.2018.10.020
doi: 10.1016/j.bej.2018.10.020
URL
|
20 |
张聪聪. 基于生物膜-膜生物反应器深度处理油田含聚丙烯酰胺污水研究[D]. 青岛:中国海洋大学,2018.
|
|
ZHANG Congcong. Study on the advanced treatment of hydrolyzed polyacrylamide-containing oilfield wastewater based on biofilm-membrane bioreactor[D]. Qingdao:Ocean University of China,2018.
|
21 |
ZHAO Lanmei, SONG Tianwen, HAN Dong,et al. Hydrolyzed polyacrylamide biotransformation in an up-flow anaerobic sludge blanket reactor system:Key enzymes,functional microorganisms,and biodegradation mechanisms[J]. Bioprocess and Biosystems Engineering,2019,42(6):941-951. doi:10.1007/s00449-019-02094-w
doi: 10.1007/s00449-019-02094-w
URL
|
22 |
LI Caiyun, ZHANG Dong, LI Xiaoxiao,et al. The biofilm property and its correlationship with high-molecular-weight polyacrylamide degradation in a water injection pipeline of Daqing oilfield[J]. Journal of Hazardous Materials,2016,304:388-399. doi:10.1016/j.jhazmat.2015.10.067
doi: 10.1016/j.jhazmat.2015.10.067
URL
|
23 |
SUN Min, TONG Zhonghua, CUI Yuzhi,et al. Microbial metabolism induced chain shortening of polyacrylamide with assistance of bioelectricity generation[J]. Environmental Science and Pollution Research,2016,23(12):12140-12149. doi:10.1007/s11356-016-6409-7
doi: 10.1007/s11356-016-6409-7
URL
|
24 |
WEN Qinxue, CHEN Zhiqiang, ZHAO Ye,et al. Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil[J]. Journal of Hazardous Materials,2010,175(1/2/3):955-959. doi:10.1016/j.jhazmat.2009.10.102
doi: 10.1016/j.jhazmat.2009.10.102
URL
|
25 |
BAO Mutai, CHEN Qingguo, LI Yiming,et al. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field[J]. Journal of Hazardous Materials,2010,184(1/2/3):105-110. doi:10.1016/j.jhazmat.2010.08.011
doi: 10.1016/j.jhazmat.2010.08.011
URL
|
26 |
ZHAO Lanmei, ZHANG Congcong, LU Zhiyang,et al. Key role of different levels of dissolved oxygen in hydrolyzed polyacrylamide bioconversion:Focusing on metabolic products,key enzymes and functional microorganisms[J]. Bioresource Technology,2020,306:123089. doi:10.1016/j.biortech.2020.123089
doi: 10.1016/j.biortech.2020.123089
URL
|
27 |
GAYTÁN I, BURELO M, LOZA-TAVERA H. Current status on the biodegradability of acrylic polymers:Microorganisms,enzymes and metabolic pathways involved[J]. Applied Microbiology and Biotechnology,2021,105(3):991-1006. doi:10.1007/s00253-020-11073-1
doi: 10.1007/s00253-020-11073-1
URL
|
28 |
DAI Xiaohu, LUO Fan, YI Jing,et al. Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system[J]. Bioresource Technology,2014,153:55-61. doi:10.1016/j.biortech.2013.11.007
doi: 10.1016/j.biortech.2013.11.007
URL
|
29 |
ZHAO Lanmei, BAO Mutai, YAN Miao,et al. Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions[J]. Bioresource Technology,2016,216:95-104. doi:10.1016/j.biortech.2016.05.054
doi: 10.1016/j.biortech.2016.05.054
URL
|
30 |
YANG Guang, WANG Jianlong. Various additives for improving dark fermentative hydrogen production:A review[J]. Renewable and Sustainable Energy Reviews,2018,95:130-146. doi:10.1016/j.rser.2018.07.029
doi: 10.1016/j.rser.2018.07.029
URL
|
31 |
AKBAR M, KHAN M F S, QIAN Ling,et al. Degradation of Polyacrylamide(PAM) and methane production by mesophilic and thermophilic anaerobic digestion:Effect of temperature and concentration[J]. Frontiers of Environmental Science & Engineering,2020,14(6):1-11. doi:10.1007/s11783-020-1277-2
doi: 10.1007/s11783-020-1277-2
URL
|
32 |
LIU Xuran, FU Qizi, LIU Zongyao,et al. Alkaline pre-fermentation for anaerobic digestion of polyacrylamide flocculated sludge:Simultaneously enhancing methane production and polyacrylamide degradation[J]. Chemical Engineering Journal,2021,425:131407. doi:10.1016/j.cej.2021.131407
doi: 10.1016/j.cej.2021.131407
URL
|
33 |
CHEN Huihui, CHEN Zheng, NASIKAI M,et al. Hydrothermal pretreatment of sewage sludge enhanced the anaerobic degradation of cationic polyacrylamide(cPAM)[J]. Water Research,2021,190:116704. doi:10.1016/j.watres.2020.116704
doi: 10.1016/j.watres.2020.116704
URL
|
34 |
WEN Qinxue, CHEN Zhiqiang, WANG Changyong,et al. Bulking sludge for PHA production:Energy saving and comparative storage capacity with well-settled sludge[J]. Journal of Environmental Sciences,2012,24(10):1744-1752. doi:10.1016/s1001-0742(11)61005-x
doi: 10.1016/s1001-0742(11)61005-x
URL
|
35 |
YANG Guang, WANG Jianlong. Co-fermentation of sewage sludge with ryegrass for enhancing hydrogen production:Performance evaluation and kinetic analysis[J]. Bioresource Technology,2017,243:1027-1036. doi:10.1016/j.biortech.2017.07.087
doi: 10.1016/j.biortech.2017.07.087
URL
|
36 |
WEN Qinxue, JI Ye, HAO Yaru,et al. Effect of sodium chloride on polyhydroxyalkanoate production from food waste fermentation leachate under different organic loading rate[J]. Bioresource Technology,2018,267:133-140. doi:10.1016/j.biortech.2018.07.036
doi: 10.1016/j.biortech.2018.07.036
URL
|
37 |
SARMA S J, PACHAPUR V, BRAR S K,et al. Hydrogen biorefinery:Potential utilization of the liquid waste from fermentative hydrogen production[J]. Renewable and Sustainable Energy Reviews,2015,50:942-951. doi:10.1016/j.rser.2015.04.191
doi: 10.1016/j.rser.2015.04.191
URL
|
38 |
CHEN Zhiqiang, GUO Zirui, WEN Qinxue,et al. Modeling polyhydroxyalkanoate(PHA) production in a newly developed aerobic dynamic discharge(ADD) culture enrichment process[J]. Chemical Engineering Journal,2016,298:36-43. doi:10.1016/j.cej.2016.03.133
doi: 10.1016/j.cej.2016.03.133
URL
|
39 |
CHEN Zhiqiang, HUANG Long, WEN Qinxue,et al. Effects of sludge retention time,carbon and initial biomass concentrations on selection process:From activated sludge to polyhydroxyalkanoate accumulating cultures[J]. Journal of Environmental Sciences,2017,52:76-84. doi:10.1016/j.jes.2016.03.014
doi: 10.1016/j.jes.2016.03.014
URL
|
40 |
REDDY M V, AMULYA K, ROHIT M V,et al. Valorization of fatty acid waste for bioplastics production using Bacillus tequilensis:Integration with dark-fermentative hydrogen production process[J]. International Journal of Hydrogen Energy,2014,39(14):7616-7626. doi:10.1016/j.ijhydene.2013.09.157
doi: 10.1016/j.ijhydene.2013.09.157
URL
|
41 |
ZHAO Lanmei, CHENG Yuan, YIN Zichao,et al. Insights into the effect of different levels of crude oil on hydrolyzed polyacrylamide biotransformation in aerobic and anoxic biosystems:Bioresource production,enzymatic activity,and microbial function[J]. Bioresource Technology,2019,293:122023. doi:10.1016/j.biortech.2019.122023
doi: 10.1016/j.biortech.2019.122023
URL
|
42 |
REDDY M V, MAWATARI Y, ONODERA R,et al. Polyhydroxyalkanoates(PHA) production from synthetic waste using Pseudomonas pseudoflava:PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii [J]. Bioresource Technology,2017,234:99-105. doi:10.1016/j.biortech.2017.03.008
doi: 10.1016/j.biortech.2017.03.008
URL
|
43 |
REDDY M V, MOHAN S V. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates(PHA) production from food waste and acidogenic effluents using aerobic consortia[J]. Bioresource Technology,2012,103(1):313-321. doi:10.1016/j.biortech.2011.09.040
doi: 10.1016/j.biortech.2011.09.040
URL
|
44 |
丁万德. 新型有机膜的制备及其在模拟含聚污水梯度分离中的应用研究[D]. 青岛:中国海洋大学,2018.
|
|
DING Wande. Fabrication of novel organic membrane and its application in the stage separation of simulated polymer flooding wastewater[D]. Qingdao:Ocean University of China,2018.
|
45 |
DING Wande, ZHUO Huiwei, BAO Mutai,et al. Fabrication of organic-inorganic nanofiltration membrane using ordered stacking SiO2 thin film as rejection layer assisted with layer-by-layer method[J]. Chemical Engineering Journal,2017,330:337-344. doi:10.1016/j.cej.2017.07.159
doi: 10.1016/j.cej.2017.07.159
URL
|