1 |
ELIASSON J. The rising pressure of global water shortages[J]. Nature,2015,517(7532):6. doi:10.1038/517006a
doi: 10.1038/517006a
URL
|
2 |
ELIMELECH M, PHILLIP W A. The future of seawater desalination:Energy,technology,and the environment[J]. Science,2011,333(6043):712-717. doi:10.1126/science.1200488
doi: 10.1126/science.1200488
URL
|
3 |
HELMHOLTZ H V. Some laws of the distribution of electric currents in physical conductors[J]. Journal of Physics and Chemistry,1853,89:211-233.
|
4 |
WALHA K, AMAR R B, FIRDAOUS L,et al. Brackish groundwater treatment by nanofiltration,reverse osmosis and electrodialysis in tunisia:Performance and cost comparison[J]. Desalination,2007,207(1/2/3):95-106. doi:10.1016/j.desal.2006.03.583
doi: 10.1016/j.desal.2006.03.583
URL
|
5 |
ALMARZOOQI F A, GHAFERI A A AL, SAADAT I,et al. Application of capacitive deionisation in water desalination:A review[J]. Desalination,2014,342:3-15. doi:10.1016/j.desal.2014.02.031
doi: 10.1016/j.desal.2014.02.031
URL
|
6 |
王凯军,房阔,宫徽,等. 从低能耗脱盐到资源回收的电容去离子技术在环境领域的研究进展[J]. 环境工程学报,2018,12(8):7-18. doi:10.12030/j.cjee.201805064
doi: 10.12030/j.cjee.201805064
URL
|
|
WANG Kaijun, FANG Kuo, GONG Hui,et al. Review on research of capacitive deionization technology in field of environment from low energy consumption desalination to resource recovery[J]. Chinese Journal of Environmental Engineering,2018,12(8):7-18. doi:10.12030/j.cjee.201805064
doi: 10.12030/j.cjee.201805064
URL
|
7 |
LEE J B, PARK K K,et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination,2006,196(1/2/3):125-134. doi:10.1016/j.desal.2006.01.011
doi: 10.1016/j.desal.2006.01.011
URL
|
8 |
JEON S I, PARK H R, YEO J G,et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science,2013,6(5):1471-1475. doi:10.1039/c3ee24443a
doi: 10.1039/c3ee24443a
URL
|
9 |
NATIV P, BADASH Y, GENDEL Y. New insights into the mechanism of flow-electrode capacitive deionization[J]. Electrochemistry Communications,2017,76:24-28. doi:10.1016/j.elecom.2017.01.008
doi: 10.1016/j.elecom.2017.01.008
URL
|
10 |
ROMMERSKIRCHEN A, KALDE A, LINNARTZ C J,et al. Unraveling charge transport in carbon flow-electrodes:Performance prediction for desalination applications[J]. Carbon,2019,145:507-520. doi:10.1016/j.carbon.2019.01.053
doi: 10.1016/j.carbon.2019.01.053
URL
|
11 |
CHO Y, LEE K S, YANG S C,et al. A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization[J]. Energy & Environmental Science,2017,10(8):1746-1750. doi:10.1039/C7EE00698E
doi: 10.1039/C7EE00698E
URL
|
12 |
MA Junjun, LIANG Peng, SUN Xueliang,et al. Energy recovery from the flow-electrode capacitive deionization[J]. Journal of Power Sources,2019,421:50-55. doi:10.1016/j.jpowsour.2019.02.082
doi: 10.1016/j.jpowsour.2019.02.082
URL
|
13 |
MA Junjun, MA Jinxing, ZHANG Changyong,et al. Water recovery rate in short-circuited closed-cycle operation of flow-electrode capacitive deionization(FCDI)[J]. Environmental Science & Technology,2019,53(23):13859-13867. doi:10.1021/acs.est.9b03263
doi: 10.1021/acs.est.9b03263
URL
|
14 |
BIAN Yanhong, CHEN Xi, LU Lu,et al. Concurrent nitrogen and phosphorus recovery using flow-electrode capacitive deionization[J]. ACS Sustainable Chemistry & Engineering,2019,7(8):7844-7850. doi:10.1021/acssuschemeng.9b00065
doi: 10.1021/acssuschemeng.9b00065
URL
|
15 |
FANG Kuo, GONG Hui, HE Wenyan,et al. Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization[J]. Chemical Engineering Journal,2018,348:301-309. doi:10.1016/j.cej.2018.04.128
doi: 10.1016/j.cej.2018.04.128
URL
|
16 |
MA Jinxing, He C, HE Di,et al. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI[J]. Water Research,2018,144:296-303. doi:10.1016/j.watres.2018.07.049
doi: 10.1016/j.watres.2018.07.049
URL
|
17 |
YANG Fan, MA Junjun, ZHANG Xudong,et al. Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance[J]. Water Research,2019,164:114904. doi:10.1016/j.watres.2019.114904
doi: 10.1016/j.watres.2019.114904
URL
|
18 |
YANG S C, JEON S I, KIM H,et al. Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology[J]. ACS Sustainable Chemistry & Engineering,2016,4(8):4174-4180. doi:10.1021/acssuschemeng.6b00689
doi: 10.1021/acssuschemeng.6b00689
URL
|
19 |
MA Jinxing, MA Junjun, ZHANG Changyong,et al. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration[J]. Water Research,2020,168:115186. doi:10.1016/j.watres.2019.115186
doi: 10.1016/j.watres.2019.115186
URL
|
20 |
刘康乐,彭思伟,史超,等. 流动电极电容去离子技术在水处理领域的研究进展[J]. 煤炭与化工,2020,43(7):147-151.
|
|
LIU Kangle, PENG Siwei, SHI Chao,et al. Research progress of flow-electrode capacitive deionization technology in water treatment field[J]. Coal and Chemical Industry,2020,43(7):147-151.
|
21 |
YANG S C, KIM H, JEON S I,et al. Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation[J]. Desalination,2017,424:110-121. doi:10.1016/j.desal.2017.09.032
doi: 10.1016/j.desal.2017.09.032
URL
|
22 |
LUO Kunyue, NIU Qiuya, ZHU Yuan,et al. Desalination behavior and performance of flow-electrode capacitive deionization under various operational modes[J]. Chemical Engineering Journal,2020,389:124051. doi:10.1016/j.cej.2020.124051
doi: 10.1016/j.cej.2020.124051
URL
|
23 |
MA Junjun, ZHANG Changyong, YANG Fan,et al. Carbon black flow electrode enhanced electrochemical desalination using single-cycle operation[J]. Environmental Science & Technology,2020,54(2):1177-1185. doi:10.1021/acs.est.9b04823
doi: 10.1021/acs.est.9b04823
URL
|
24 |
MOURSHED M, NIYA S M R, OJHA R,et al. Carbon-based slurry electrodes for energy storage and power supply systems[J]. Energy Storage Materials,2021,40:461-489. doi:10.1016/j.ensm.2021.05.032
doi: 10.1016/j.ensm.2021.05.032
URL
|
25 |
PORADA S, WEINGARTH D, HAMELERS H V M,et al. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation[J]. Journal of Materials Chemistry A,2014,2(24):9313-9321. doi:10.1039/c4ta01783h
doi: 10.1039/c4ta01783h
URL
|
26 |
HATZELL K B, HATZELL M C, COOK K M,et al. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization[J]. Environmental Science & Technology,2015,49(5):3040-3047. doi:10.1021/es5055989
doi: 10.1021/es5055989
URL
|
27 |
LI Danping, NING Xu’an, YANG Chenghai,et al. Rich heteroatom doping magnetic carbon electrode for flow-capacitive deionization with enhanced salt removal ability[J]. Desalination,2020,482:114374. doi:10.1016/j.desal.2020.114374
doi: 10.1016/j.desal.2020.114374
URL
|
28 |
XU Xingtao, WANG Miao,LIUYong,et al. Ultrahigh desalinization performance of asymmetric flow-electrode capacitive deionization device with an improved operation voltage of 1.8 V[J]. ACS Sustainable Chemistry & Engineering,2016,5(1):189-195. doi:10.1021/acssuschemeng.6b01212
doi: 10.1021/acssuschemeng.6b01212
URL
|
29 |
SEREDYCH M, HULICOVA-JURCAKOVA D, GAO Q L,et al. Surface functional groups of carbons and the effects of their chemical character,density and accessibility to ions on electrochemical performance[J]. Carbon,2008,46(11):1475-1488. doi:10.1016/j.carbon.2008.06.027
doi: 10.1016/j.carbon.2008.06.027
URL
|
30 |
PARK H R, CHOI J, YANG S C,et al. Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization[J]. RSC Advances,2016,6(74):69720-69727. doi:10.1039/c6ra02480g
doi: 10.1039/c6ra02480g
URL
|
31 |
LIANG Peng, SUN Xueliang, BIAN Yanhong,et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination,2017,420:63-69. doi:10.1016/j.desal.2017.05.023
doi: 10.1016/j.desal.2017.05.023
URL
|
32 |
TANG Kexin, YIACOUMI S, LI Yuping,et al. Enhanced water desalination by increasing the electroconductivity of carbon powders for high-performance flow-electrode capacitive deionization[J]. ACS Sustainable Chemistry & Engineering,2018,7(1):1085-1094. doi:10.1021/acssuschemeng.8b04746
doi: 10.1021/acssuschemeng.8b04746
URL
|
33 |
MA Jinxing, HE Di, TANG Wangwang,et al. Development of redox-active flow electrodes for high-performance capacitive deionization[J]. Environmental Science & Technology,2016,50(24):13495-13501. doi:10.1021/acs.est.6b03424
doi: 10.1021/acs.est.6b03424
URL
|
34 |
DENNISON C R, BEIDAGHI M, HATZELL K B,et al. Effects of flow cell design on charge percolation and storage in the carbon slurry electrodes of electrochemical flow capacitors[J]. Journal of Power Sources,2014,247:489-496. doi:10.1016/j.jpowsour.2013.08.101
doi: 10.1016/j.jpowsour.2013.08.101
URL
|
35 |
YANG S C, CHOI J, YEO J G,et al. Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration[J]. Environmental Science & Technology,2016,50(11):5892-5899. doi:10.1021/acs.est.5b04640
doi: 10.1021/acs.est.5b04640
URL
|
36 |
ZHANG Jing, TANG Lin, TANG Wangwang,et al. Removal and recovery of phosphorus from low-strength wastewaters by flow-electrode capacitive deionization[J]. Separation and Purification Technology,2020,237:116322. doi:10.1016/j.seppur.2019.116322
doi: 10.1016/j.seppur.2019.116322
URL
|
37 |
杨宏艳,张卫珂,葛坤,等. 流动性电极电容去离子技术的脱盐性能研究[J]. 环境污染与防治,2017,39(8):911-915.
|
|
YANG Hongyan, ZHANG Weike, GE Kun,et al. Research on the desalination performance of fluid-electrode capacitive deionization technology[J]. Environmental Pollution and Control,2017,39(8):911-915.
|
38 |
TANG Kexin, YIACOUMI S, LI Yuping,et al. Optimal conditions for efficient flow-electrode capacitive deionization[J]. Separation and Purification Technology,2020,240:1085-1094. doi:10.1016/j.seppur.2020.116626
doi: 10.1016/j.seppur.2020.116626
URL
|
39 |
JEON S I, YEO J G, YANG S C,et al. Ion storage and energy recovery of a flow-electrode capacitive deionization process[J]. Journal of Materials Chemistry A,2014,2(18):6378. doi:10.1039/c4ta00377b
doi: 10.1039/c4ta00377b
URL
|
40 |
CHOI S, CHANG B, KANG J H,et al. Energy-efficient hybrid FCDI-NF desalination process with tunable salt rejection and high water recovery[J]. Journal of Membrane Science,2017,541:580-586. doi:10.1016/j.memsci.2017.07.043
doi: 10.1016/j.memsci.2017.07.043
URL
|
41 |
CHUNG H J, KIM J, KIM D I,et al. Feasibility study of reverse osmosis-flow capacitive deionization (RO-FCDI) for energy-efficient desalination using seawater as the flow-electrode aqueous electrolyte[J]. Desalination,2020,479:114326. doi:10.1016/j.desal.2020.114326
doi: 10.1016/j.desal.2020.114326
URL
|
42 |
FANG Kuo, HE Wenyan, PENG Fei,et al. Ammonia recovery from concentrated solution by designing novel stacked FCDI cell[J]. Separation and Purification Technology,2020,250:117066. doi:10.1016/j.seppur.2020.117066
doi: 10.1016/j.seppur.2020.117066
URL
|
43 |
LIN Lin, HU Jiahui, LIU Jiahua,et al. Selective ammonium removal from synthetic wastewater by flow-electrode capacitive deionization using a novel K2Ti2O5-activated carbon mixture electrode[J]. Environmental Science & Technology,2020,54(19):12723-12731. doi:10.1021/acs.est.0c04383
doi: 10.1021/acs.est.0c04383
URL
|
44 |
ZHANG Changyong, WANG Min, XIAO Wei,et al. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI)[J]. Water Research,2021,189:116653. doi:10.1016/j.watres.2020.116653
doi: 10.1016/j.watres.2020.116653
URL
|
45 |
ZHANG Changyong, MA Jinxing, SONG Jingke,et al. Continuous ammonia recovery from wastewaters using an integrated capacitive flow electrode membrane stripping system[J]. Environmental Science & Technology,2018,52(24):14275-14285. doi:10.1021/acs.est.8b02743
doi: 10.1021/acs.est.8b02743
URL
|
46 |
ZHANG Changyong, CHENG Xiang, WANG Min,et al. Phosphate recovery as vivianite using a flow-electrode capacitive desalination(FCDI) and fluidized bed crystallization(FBC) coupled system[J]. Water Research,2021,194:116939. doi:10.1016/j.watres.2021.116939
doi: 10.1016/j.watres.2021.116939
URL
|
47 |
ZHANG Xudong, YANG Fan, MA Junjun,et al. Effective removal and selective capture of copper from salty solution in flow electrode capacitive deionization[J]. Environmental Science:Water Research & Technology,2020,6(2):341-350. doi:10.1039/c9ew00467j
doi: 10.1039/c9ew00467j
URL
|
48 |
HE C, MA Jinxing, ZHANG Changyong,et al. Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening[J]. Environmental Science & Technology,2018,52(16):9350-9360. doi:10.1021/acs.est.8b02807
doi: 10.1021/acs.est.8b02807
URL
|
49 |
YU Chao, XU Longqian, MAO Yunfeng,et al. Efficient recovery of carboxylates from the effluents treated by advanced oxidation processes using flow-electrode capacitive deionization in short-circuited closed-cycle operation[J]. Separation and Purification Technology,2021,275:119151. doi:10.1016/j.seppur.2021.119151
doi: 10.1016/j.seppur.2021.119151
URL
|
50 |
ZHANG Changyong, MA Jinxing, WU Lei,et al. Flow electrode capacitive deionization(FCDI):Recent developments,environmental applications,and future perspectives[J]. Environmental Science & Technology,2021,55(8):4243-4267. doi:10.1021/acs.est.0c06552
doi: 10.1021/acs.est.0c06552
URL
|
51 |
LIM H,HA Y, JUNG H B,et al. Energy storage and generation through desalination using flow-electrodes capacitive deionization[J]. Journal of Industrial and Engineering Chemistry,2020,81:317-322. doi:10.1016/j.jiec.2019.09.020
doi: 10.1016/j.jiec.2019.09.020
URL
|