1 |
BLOWES D W, PTACEK C J, JAMBOR J L. In-situ remediation of Cr(Ⅵ)-contaminated groundwater using permeable reactive walls:Laboratory studies[J]. Environmental Science & Technology,1997,31(12):3348-3357. doi:10.1021/es960844b
|
2 |
HENDERSON A D, DEMOND A H. Long-term performance of zero-valent iron permeable reactive barriers:A critical review[J]. Environmental Engineering Science,2007,24(4):401-423. doi:10.1089/ees.2006.0071
|
3 |
U. S. EPA. Field applications of in-situ remediation technologies:Permeable reactive barriers[R]. Washington D. C.:U. S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office,2002.
|
4 |
赵勇胜. 地下水污染场地污染的控制与修复[J]. 吉林大学学报:地球科学版,2007,37(2):303-310.
|
|
ZHAO Yongsheng. Groundwater pollution control and remediation[J]. Journal of Jilin University:Earth Science Edition,2007,37(2):303-310.
|
5 |
POWELL R M, BLOWES D W, GILLHAM R W,et al. Permeable reactive barrier technologies for contaminant remediation[R]. Washington D. C.:U. S. Environmental Protection Agency Office of Research and Development,Office of Solid Waste and Emergency Response,1998.
|
6 |
Interstate Technology and Regulatory Council(ITRC). Permeable reactive barrier:Lessons learned/new directions[R]. Washington,D. C.:Permeable Reactive Barriers Team,2005. doi:10.1016/s0927-5215(05)80005-0
|
7 |
刘菲,陈亮,王广才,等. 地下水渗透反应格栅技术发展综述[J]. 地球科学进展,2015,30(8):863-877. doi:10.11867/j.issn.1001-8166.2015.08.0863
|
|
LIU Fei, CHEN Liang, WANG Guangcai,et al. Permeable reactive barrier for groundwater pollution remediation:An overview[J]. Advances in Earth Science,2015,30(8):863-877. doi:10.11867/j.issn.1001-8166.2015.08.0863
|
8 |
OBIRI-NYARKO F, GRAJALES-MESA S J, MALINA G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere,2014,111:243-259. doi:10.1016/j.chemosphere.2014.03.112
|
9 |
GOLAB A N, PETERSON M A, INDRARATNA B. Selection of potential reactive materials for a permeable reactive barrier for remediating acidic groundwater in acid sulphate soil terrains[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2006,39(2):209-223. doi:10.1144/1470-9236/05-037
|
10 |
SONG Jiangmin, HUANG Guanxing, HAN Dongya,et al. A review of reactive media within permeable reactive barriers for the removal of heavy metal(loid)s in groundwater:Current status and future prospects[J]. Journal of Cleaner Production,2021,319:128644. doi:10.1016/j.jclepro.2021.128644
|
11 |
XIN Jia, FAN Shufen, YUAN Mengjiao,et al. Effects of co-existing nitrate on TCE removal by mZVI under different pollution load scenarios:Kinetics,electron efficiency and mechanisms[J]. Science of the Total Environment,2020,716:137111. doi:10.1016/j.scitotenv.2020.137111
|
12 |
VOGAN J L, FOCHT R M, CLARK D K,et al. Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater[J]. Journal of Hazardous Materials,1999,68(1/2):97-108. doi:10.1016/s0304-3894(99)00033-3
|
13 |
LI Meiqi, MU Yi, SHANG Huan,et al. Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(Ⅵ) removal[J]. Applied Catalysis B:Environmental,2020,263:118364. doi:10.1016/j.apcatb.2019.118364
|
14 |
RASHID U S, SAINI-EIDUKAT B, BEZBARUAH A N. Modeling arsenic removal by nanoscale zero-valent iron[J]. Environmental Monitoring and Assessment,2020,192(2):1-7. doi:10.1007/s10661-020-8075-y
|
15 |
ISHAG A, LI Ying, ZHANG Ning,et al. Environmental application of emerging zero-valent iron-based materials on removal of radionuclides from the wastewater:A review[J]. Environmental Research,2020,188:109855. doi:10.1016/j.envres.2020.109855
|
16 |
WESTERHOFF P, JAMES J. Nitrate removal in zero-valent iron packed columns[J]. Water Research,2003,37(8):1818-1830. doi:10.1016/s0043-1354(02)00539-0
|
17 |
SAYLES G D, YOU Guanrong, WANG Maoxiu,et al. DDT,DDD,and DDE dechlorination by zero-valent iron[J]. Environmental Science & Technology,1997,31(12):3448-3454. doi:10.1021/es9701669
|
18 |
GUAN Xiaohong, SUN Yuankui, QIN Hejie,et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures:The development in zero-valent iron technology in the last two decades(1994—2014)[J]. Water Research,2015,75:224-248. doi:10.1016/j.watres.2015.02.034
|
19 |
TASHARROFI S, ROUZITALAB Z, MAKLAVANY D M,et al. Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs[J]. Science of the Total Environment,2020,736:139570. doi:10.1016/j.scitotenv.2020.139570
|
20 |
ZHANG Yuling, LI Yimin, LI Jianfa,et al. Enhanced Cr(Ⅵ) removal by using the mixture of pillared bentonite and zero-valent iron[J]. Chemical Engineering Journal,2012,185/186:243-249. doi:10.1016/j.cej.2012.01.095
|
21 |
HOU Xiaolu, CHEN Xi, BI Shiyin,et al. Catalytic degradation of TCE by a PVDF membrane with Pd-coated nanoscale zero-valent iron reductant[J]. Science of the Total Environment,2020,702:135030. doi:10.1016/j.scitotenv.2019.135030
|
22 |
ZHU Fang, WU Yuanyuan, LIANG Yukun,et al. Degradation mechanism of norfloxacin in water using persulfate activated by BC@nZVI/Ni[J]. Chemical Engineering Journal,2020,389:124276. doi:10.1016/j.cej.2020.124276
|
23 |
ZAHEER Z, AL-ASFAR A, AAZAM E S. Adsorption of methyl red on biogenic Ag@Fe nanocomposite adsorbent:Isotherms,kinetics and mechanisms[J]. Journal of Molecular Liquids,2019,283:287-298. doi:10.1016/j.molliq.2019.03.030
|
24 |
ELJAMAL O, THOMPSON I P, MAAMOUN I,et al. Investigating the design parameters for a permeable reactive barrier consisting of nanoscale zero-valent iron and bimetallic iron/copper for phosphate removal[J]. Journal of Molecular Liquids,2020,299:112144. doi:10.1016/j.molliq.2019.112144
|
25 |
PICARD A, GARTMAN A, CLARKE D R,et al. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite[J]. Geochimica Et Cosmochimica Acta,2018,220:367-384. doi:10.1016/j.gca.2017.10.006
|
26 |
Ying LÜ, LI Zhanfeng, LI Jianfa,et al. Synergetic effect of pyrite on Cr(Ⅵ) removal by zero valent iron in column experiments:An investigation of mechanisms[J]. Chemical Engineering Journal,2018,349:522-529. doi:10.1016/j.cej.2018.05.133
|
27 |
DONG Guihua, HUANG Lihui, WU Xueyuan,et al. Effect and mechanism analysis of MnO2 on permeable reactive barrier(PRB) system for the removal of tetracycline[J]. Chemosphere,2018,193:702-710. doi:10.1016/j.chemosphere.2017.11.085
|
28 |
ZENG Qiang, HUANG Yongji, HUANG Leiming,et al. Efficient removal of hexavalent chromium in a wide pH range by composite of SiO2 supported nano ferrous oxalate[J]. Chemical Engineering Journal,2020,383:123209. doi:10.1016/j.cej.2019.123209
|
29 |
HUANG Dandan, WANG Guangcai, SHI Zheming,et al. Removal of hexavalent chromium in natural groundwater using activated carbon and cast iron combined system[J]. Journal of Cleaner Production,2017,165:667-676. doi:10.1016/j.jclepro.2017.07.152
|
30 |
SONG Tiehong, GAO Yanjiao. Removal of trichloroethylene(TCE) from groundwater by GAC and ZVI[J]. Desalination and Water Treatment,2014,52(31/32/33):5990-5994. doi:10.1080/19443994.2013.812522
|
31 |
YANG Ji, CAO Limei, GUO Rui,et al. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water[J]. Journal of Hazardous Materials,2010,184(1/2/3):782-787. doi:10.1016/j.jhazmat.2010.08.109
|
32 |
HE Ruozhu, PENG Zhongya, Honghong LÜ,et al. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal[J]. Science of the Total Environment,2018,612:1177-1186. doi:10.1016/j.scitotenv.2017.09.016
|
33 |
LAWRINENKO M, WANG Zhuangji, HORTON R,et al. Macroporous carbon supported zerovalent iron for remediation of trichloroethylene[J]. ACS Sustainable Chemistry & Engineering,2017,5(2):1586-1593. doi:10.1021/acssuschemeng.6b02375
|
34 |
KUMAR A, JENA H M. Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column[J]. Journal of Cleaner Production,2016,137:1246-1259. doi:10.1016/j.jclepro.2016.07.177
|
35 |
ANJUM H, JOHARI K, GNANASUNDARAM N,et al. Impact of surface modification on adsorptive removal of BTX onto activated carbon[J]. Journal of Molecular Liquids,2019,280:238-251. doi:10.1016/j.molliq.2019.02.046
|
36 |
KRASNOVA T A, BELYAEVA O V, GORELKINA A K,et al. Trichloroethylene adsorption from aqueous solutions by activated carbons[J]. Carbon Letters,2020,30(3):281-287. doi:10.1007/s42823-019-00096-y
|
37 |
阚金涛,刘传犇,王敬阳,等. 光核桃核壳活性炭对Cr(Ⅵ)的吸附机理探究[J]. 工业水处理,2020,40(10):76-80. doi:10.11894/iwt.2019-1082
|
|
KAN Jintao, LIU Chuanben, WANG Jingyang,et al. Adsorption mechanism of hexavalent chromium with activated carbon of Prunus mira shell[J]. Industrial Water Treatment,2020,40(10):76-80. doi:10.11894/iwt.2019-1082
|
38 |
KYZAS G Z, BOMIS G, KOSHELEVA R I,et al. Nanobubbles effect on heavy metal ions adsorption by activated carbon[J]. Chemical Engineering Journal,2019,356:91-97. doi:10.1016/j.cej.2018.09.019
|
39 |
WANG Yulong, LIU Hupeng, WANG Shaofeng,et al. Simultaneous removal and oxidation of arsenic from water by δ-MnO2 modified activated carbon[J]. Journal of Environmental Sciences,2020,94:147-160. doi:10.1016/j.jes.2020.03.006
|
40 |
康彩艳,李秋燕,刘金玉,等. 不同热解温度生物炭对Cd2+的吸附影响[J]. 工业水处理,2021,41(5):68-72.
|
|
KANG Caiyan, LI Qiuyan, LIU Jinyu,et al. Effect of biochar at different pyrolysis temperatures on the adsorption of Cd2+ [J]. Industrial Water Treatment,2021,41(5):68-72.
|
41 |
DAI Yingjie, ZHANG Naixin, XING Chuanming,et al. The adsorption,regeneration and engineering applications of biochar for removal organic pollutants:A review[J]. Chemosphere,2019,223:12-27. doi:10.1016/j.chemosphere.2019.01.161
|
42 |
LIU Shaobo, HUANG Binyan, CHAI Liyuan,et al. Enhancement of As(Ⅴ) adsorption from aqueous solution by a magnetic chitosan/biochar composite[J]. RSC Advances,2017,7(18):10891-10900. doi:10.1039/c6ra27341f
|
43 |
WANG Jianguo, CHEN Nan, FENG Chuanping,et al. Performance and mechanism of fluoride adsorption from groundwater by lanthanum-modified pomelo peel biochar[J]. Environmental Science and Pollution Research,2018,25(16):15326-15335. doi:10.1007/s11356-018-1727-6
|
44 |
MENG Ruihong, CHEN Tan, ZHANG Yaxin,et al. Development,modification,and application of low-cost and available biochar derived from corn straw for the removal of vanadium(Ⅴ) from aqueous solution and real contaminated groundwater[J]. RSC Advances,2018,8(38):21480-21494. doi:10.1039/c8ra02172d
|
45 |
VUKOJEVIĆ MEDVIDOVIĆ N, NUIĆ I, UGRINA M,et al. Evaluation of natural zeolite as a material for permeable reactive barrier for remediation of zinc-contaminated groundwater based on column study[J]. Water,Air,& Soil Pollution,2018,229(11):1-14. doi:10.1007/s11270-018-4019-3
|
46 |
ZHANG Yunhui, JIN Fei, SHEN Zhengtao,et al. Kinetic and equilibrium modelling of MTBE(methyl tert-butyl ether) adsorption on ZSM-5 zeolite:Batch and column studies[J]. Journal of Hazardous Materials,2018,347:461-469. doi:10.1016/j.jhazmat.2018.01.007
|
47 |
ZHANG Yunhui, JIN Fei, SHEN Zhengtao,et al. Adsorption of methyl tert-butyl ether(MTBE) onto ZSM-5 zeolite:Fixed-bed column tests,breakthrough curve modelling and regeneration[J]. Chemosphere,2019,220:422-431. doi:10.1016/j.chemosphere.2018.12.170
|
48 |
VAEZIHIR A, BAYANLOU M B, AHMADNEZHAD Z,et al. Remediation of BTEX plume in a continuous flow model using zeolite-PRB[J]. Journal of Contaminant Hydrology,2020,230:103604. doi:10.1016/j.jconhyd.2020.103604
|
49 |
OBIRI-NYARKO F, KWIATKOWSKA-MALINA J, MALINA G,et al. Assessment of zeolite and compost-zeolite mixture as permeable reactive materials for the removal of lead from a model acidic groundwater[J]. Journal of Contaminant Hydrology,2020,229:103597. doi:10.1016/j.jconhyd.2019.103597
|
50 |
MEDINA-RAMIREZ A, GAMERO-MELO P, RUIZ-CAMACHO B,et al. Adsorption of aqueous As(Ⅲ) in presence of coexisting ions by a green Fe-modified W zeolite[J]. Water,2019,11(2):281. doi:10.3390/w11020281
|
51 |
WOŁOWIEC M, MUIR B, ZIĘBA K,et al. Experimental study on the removal of VOCs and PAHs by zeolites and surfactant-modified zeolites[J]. Energy & Fuels,2017,31(8):8803-8812. doi:10.1021/acs.energyfuels.7b01124
|
52 |
MA Junchao, STEVENS G W, MUMFORD K A. The performance of diphenyldichlorosilane coated ammonium exchange zeolite and its application in the combination of adsorption and biodegradation of hydrocarbon contaminated ground water[J]. Chemical Engineering Journal,2018,347:415-423. doi:10.1016/j.cej.2018.04.115
|
53 |
WANG Fei, XU Wangqi, XU Zhaochen,et al. CTMAB-modified bentonite-based PRB in remediating Cr(Ⅵ) contaminated groundwater[J]. Water,Air,& Soil Pollution,2020,231(1):1-11. doi:10.1007/s11270-019-4386-4
|
54 |
WANG Li, WANG Aiqin. Adsorption behaviors of Congo red on the N,O-carboxymethyl-chitosan/montmorillonite nanocomposite[J]. Chemical Engineering Journal,2008,143(1/2/3):43-50. doi:10.1016/j.cej.2007.12.007
|
55 |
FUTALAN C M, YANG J H, PHATAI P,et al. Fixed-bed adsorption of copper from aqueous media using chitosan-coated bentonite,chitosan-coated sand,and chitosan-coated kaolinite[J]. Environmental Science and Pollution Research,2020,27(20):24659-24670. doi:10.1007/s11356-019-06083-0
|
56 |
YEE J J, ARIDA C V J, FUTALAN C M,et al. Treatment of contaminated groundwater via arsenate removal using chitosan-coated bentonite[J]. Molecules,2019,24(13):2464. doi:10.3390/molecules24132464
|
57 |
LI Liang, SHENG G D. Cation-group interaction as the predominant force for adsorption of substituted dinitrobenzenes by smectite clays[J]. Environmental Science and Pollution Research,2019,26(23):24223-24234. doi:10.1007/s11356-019-05707-9
|
58 |
CHEN Ning, HUANG Meiying, LIU Cun,et al. Transformation of tetracyclines induced by Fe(Ⅲ)-bearing smectite clays under anoxic dark conditions[J]. Water Research,2019,165:114997. doi:10.1016/j.watres.2019.114997
|
59 |
TEEPAKAKORN A P, BUREEKAEW S, OGAWA M. Adsorption-induced dye stability of cationic dyes on clay nanosheets[J]. Langmuir,2018,34(46):14069-14075. doi:10.1021/acs.langmuir.8b02978
|
60 |
YAN Feng, SPYROU K, THOMOU E,et al. Smectite clay pillared with copper complexed polyhedral oligosilsesquioxane for adsorption of chloridazon and its metabolites[J]. Environmental Science:Nano,2020,7(2):424-436. doi:10.1039/c9en00974d
|
61 |
DURÁN E, BUENO S, HERMOSÍN M C,et al. Optimizing a low added value bentonite as adsorbent material to remove pesticides from water[J]. Science of the Total Environment,2019,672:743-751. doi:10.1016/j.scitotenv.2019.04.014
|