1 |
WANG Xiaohui, XIN Jia, YUAN Mengjiao,et al. Electron competition and electron selectivity in abiotic,biotic,and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater:A review[J]. Water Research, 2020, 183:116060. doi: 10.1016/j.watres.2020.116060
|
2 |
王梦杰,范婷婷,王祥,等. 典型农药污染场地地下水中氯代脂肪烃自然衰减研究[J]. 环境科学学报,2022,42(6):155-166.
|
|
WANG Mengjie, FAN Tingting, WANG Xiang,et al. Study on natural attenuation of chlorinated aliphatic hydrocarbons in groundwater of typical pesticide contaminated sites[J]. Acta Scientiae Circumstantiae,2022,42(6):155-166.
|
3 |
郑嘉睿,冷文鹏,王佳佳,等. 氯代烃污染场地微生物修复技术研究进展[J]. 地学前缘,2024,31(2):157-172.
|
|
ZHENG Jiarui, LENG Wenpeng, WANG Jiajia,et al. Research progress of microbial remediation technigues in chlorinated hydrocarbon contaminated sites[J]. Earth Science Frontiers,2024,31(2):157-172.
|
4 |
刘帅,赵天涛,邢志林,等. 氯代脂肪烃生物与非生物共促降解机制研究进展[J]. 生物工程学报,2018,34(4):510-524.
|
|
LIU Shuai, ZHAO Tiantao, XING Zhilin,et al. Advances in biotic and abiotic mutual promoting mechanism for chlorinated aliphatic hydrocarbons degradation[J]. Chinese Journal of Biotechnology,2018,34(4):510-524.
|
5 |
葛锋,张转霞,扶恒,等. 我国有机污染场地现状分析及展望[J]. 土壤,2021,53(6):1132-1141.
|
|
GE Feng, ZHANG Zhuanxia, FU Heng,et al. Distribution of organic contaminated sites in China:Statu quo and prospect[J]. Soils,2021,53(6):1132-1141.
|
6 |
冯炘,岳俊杰,王玉婷,等. 地下水中三氯乙烯污染修复的研究进展[J]. 工业水处理,2015,35(7):5-9.
|
|
FENG Xin, YUE Junjie, WANG Yuting,et al. Research progress in the remediation of trichloroethylene pollution in groundwater[J]. Industrial Water Treatment,2015,35(7):5-9.
|
7 |
吉昌铃. 生物炭基复合材料协同微生物处理氯代烃污染地下水的机制[D]. 上海:华东理工大学,2019.
|
|
JI Changling. Mechanism of bio-carbon-based composite in synergistic microbial treatment of chlorinated hydrocarbon contaminated groundwater[D]. Shanghai:East China University of Science and Technology,2019.
|
8 |
CHEN Wenfu, MENG Jun, HAN Xiaori,et al. Past,present,and future of biochar[J]. Biochar, 2019, 1(1):75-87. doi: 10.1007/s42773-019-00008-3
|
9 |
XU Wenqiang, LI Zhenjie, SHI Shasha,et al. Carboxymethyl cellulose stabilized and sulfidated nanoscale zero-valent iron:Characterization and trichloroethene dechlorination[J]. Applied Catalysis B:Environmental, 2020, 262:118303. doi: 10.1016/j.apcatb.2019.118303
|
10 |
陶宏林,单爱琴,李海花,等. Cu/Fe双金属去除四氯化碳的研究[J]. 安徽农业科学,2011,39(17):10377-10379.
|
|
TAO Honglin, SHAN Aiqin, LI Haihua,et al. Studies on the removal of carbon tetrachloride by Cu/Fe bimetal[J]. Journal of Anhui Agricultural Sciences,2011,39(17):10377-10379.
|
11 |
HUANG C C, LO S L, LIEN H L. Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant[J]. Chemical Engineering Journal, 2012, 203:95-100. doi: 10.1016/j.cej.2012.07.002
|
12 |
PAN Ying, LEUNG P Y, LI Yuanyue,et al. Enhancement effect of nanoscale zero-valent iron addition on microbial degradation of BDE-209 in contaminated mangrove sediment[J]. Science of the Total Environment, 2021, 781:146702. doi: 10.1016/j.scitotenv.2021.146702
|
13 |
龙颖,钱林波,李云桂,等. 纳米零价铁修复氯代烃和铬污染场地研究进展[J]. 环境科学与技术,2022,45(3):127-140.
|
|
LONG Ying, QIAN Linbo, LI Yungui,et al. Research progresses on nanoscale zero-valent iron for the remediation of site contaminated by chlorinated aliphatic hydrocarbon and chromium[J]. Environmental Science & Technology,2022,45(3):127-140.
|
14 |
MATHESON L J, TRATNYEK P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology, 1994, 28(12):2045-2053. doi: 10.1021/es00061a012
|
15 |
RAJI M, MIRBAGHERI S A, YE Fei,et al. Nano zero-valent iron on activated carbon cloth support as Fenton-like catalyst for efficient color and COD removal from melanoidin wastewater[J]. Chemosphere, 2021, 263:127945. doi: 10.1016/j.chemosphere.2020.127945
|
16 |
严芳敏,郭明帅,王菲. 炭铁材料修复三氯乙烯污染地下水的性能[J]. 中国环境科学,2024,44(2):825-831.
|
|
YAN Fangmin, GUO Mingshuai, WANG Fei. The performance of biochar/nZVI composite in remediating trichloroethylene contaminated groundwater[J]. China Environmental Science,2024,44(2):825-831.
|
17 |
HOU Daibing, CUI Xuedan, LIU Meng,et al. Degradation of trichloroethylene by biochar supported nano zero-valent iron(BC-nZVI):The role of specific surface area and electrochemical properties[J]. Science of the Total Environment, 2024, 908:168341. doi: 10.1016/j.scitotenv.2023.168341
|
18 |
SAHU R S, CHENG Yuling, SU Y F,et al. Controlled polyethylene glycol and activated carbon interaction with nanoscale zerovalent iron for trichloroethylene degradation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116:137-143. doi: 10.1016/j.jtice.2020.11.005
|
19 |
BALDERMANN A, KAUFHOLD S, DOHRMANN R,et al. A novel nZVI-bentonite nanocomposite to remove trichloroethene(TCE) from solution[J]. Chemosphere, 2021, 282:131018. doi: 10.1016/j.chemosphere.2021.131018
|
20 |
COSTA J A S, DE JESUS R A, SANTOS D O,et al. Synthesis,functionalization,and environmental application of silica-based mesoporous materials of the M41S and SBA-n families:A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(3):105259. doi: 10.1016/j.jece.2021.105259
|
21 |
GU Mengbin, FAROOQ U, LU Shuguang,et al. Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments[J]. Journal of Hazardous Materials, 2018, 349:35-44. doi: 10.1016/j.jhazmat.2018.01.037
|
22 |
严群,靳涵宇,宋忠贤,等. 活性污泥生物炭的制备及吸附性能的研究进展[J]. 有色金属科学与工程,2024,15(4):615-622.
|
|
YAN Qun, JIN Hanyu, SONG Zhongxian,et al. Research progress on preparation and adsorption properties of activated sludge carbon-based materials[J]. Nonferrous Metals Science and Engineerin,2024,15(4):615-622.
|
23 |
LONG Yingtao, LIANG Jianjun, XUE Yinghao. Ultrasound-assisted electrodeposition synthesis of nZVI-Pd/AC toward reductive degradation of methylene blue[J]. Environmental Science and Pollution Research, 2021, 28(47):67098-67107. doi: 10.1007/s11356-021-15316-0
|
24 |
卫建军,葛毅捷. 纳米镍-铁/介孔氧化铝的制备及其三氯乙烯还原脱氯活性研究[J]. 环境工程,2023,41(6):132-142.
|
|
WEI Jianjun, GE Yijie. Preparation of bimetallic Ni-Fe nanoparticles supported on mesoporous alumina for reductive dechlorination toward trichloroethylene[J]. Environmental Engineering,2023,41(6):132-142.
|
25 |
杨慧,吕小凡,陈海,等. CeO2负载型双金属Pd/Fe催化还原四氯化碳的实验研究[J]. 环境科学学报,2018,38(1):226-233.
|
|
YANG Hui, Xiaofan LÜ, CHEN Hai,et al. Reductive dechlorination of carbon tetrachloride by CeO2 supported bimetallic Pd/Fe catalyst[J]. Acta Scientiae Circumstantiae,2018,38(1):226-233.
|
26 |
马梦雪,占敬敬. 共存离子对生物沉淀法硫化纳米零价铁降解三氯乙烯的影响[J]. 应用化工,2023,52(12):3252-3256.
|
|
MA Mengxue, ZHAN Jingjing. Effect of coexisting ions on trichloroethylene degradation by sulfidated nano zero-valent iron prepared by biological precipitation[J]. Applied Chemical Industry,2023,52(12):3252-3256.
|
27 |
SHAN A, IDREES A, ZAMAN W Q,et al. Synthesis of CaCO 3 supported nano zero-valent iron-nickel nanocomposite(nZVI-Ni@CaCO 3) and its application for trichloroethylene removal in persulfate activated system[J]. Environmental Research, 2023, 245:118050-118050. doi: 10.1016/j.envres.2023.118050
|
28 |
CHEN Zhiguo, CAO Wenqing, BAI He,et al. Review on the degradation of chlorinated hydrocarbons by persulfate activated with zero-valent iron-based materials[J]. Water Science and Technology, 2023, 87(3):761-782. doi: 10.2166/wst.2023.009
|
29 |
陈静,陈海,金歆,等. 纳米零价铁降解水中四氯化碳的试验研究[J]. 环境科学学报,2017,37(2):610-616.
|
|
CHEN Jing, CHEN Hai, JIN Xin,et al. Degradation of aqueous carbon tetrachloride by nanoscale zero-valent iron[J]. Acta Scientiae Circumstantiae,2017,37(2):610-616.
|
30 |
SI Huimin, CHE Mingda, CHEN Zhiguo,et al. Efficient removal of chloroform in groundwater by polyethylene glycol-stabilized Fe/Ni nanoparticles[J]. Environmental Chemistry Letters, 2021, 19(4):3511-3515. doi: 10.1007/s10311-021-01228-5
|
31 |
VAN DER PLOEG J, VAN HALL G, JANSSEN D B. Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene[J]. Journal of Bacteriology, 1991, 173(24):7925-7933. doi: 10.1128/jb.173.24.7925-7933.1991
|
32 |
|
|
WANG Xiaochun. Isolation,identification and degradation characteristics of dichloroethane degrading bacteria[D]. Hangzhou:Zhejiang University of Technology, 2013. doi: 10.3724/sp.j.1238.2012.00642
|
33 |
程玉. 四氯化碳降解菌的分离鉴定及降解机理研究[D]. 哈尔滨:哈尔滨师范大学,2022.
|
|
CHENG Yu. Isolation,identification and degradation mechanism of carbon tetrachloride degrading bacteria[D]. Harbin:Harbin Normal University,2022.
|
34 |
KUMAR A, PILLAY B, OLANIRAN A O. Genome sequence and metabolic analysis revealed the catabolic pathways for the degradation of 1,2-dichloroethane and other related xenobiotics in Ancylobacter aquaticus strain UV5[J]. Gene Reports, 2020, 21:100969. doi: 10.1016/j.genrep.2020.100969
|
35 |
JENNINGS L K, GIDDINGS C G, GOSSETT J M. Bioaugmentation for aerobic degradation of cis-1,2-dichloroethene[J]. Bioaugmentation for Groundwater Remediation, 2013, 7:199-217. doi: 10.1007/978-1-4614-4115-1_7
|
36 |
MUKHERJEE P, ROY P. Purification and identification of trichloroethylene induced proteins from Stenotrophomonas maltophilia PM 102 by immuno-affinity-chromatography and MALDI-TOF mass spectrometry[J]. SpringerPlus, 2013, 2(1):207. doi: 10.1186/2193-1801-2-207
|
37 |
周玲. PCE及低氯代烯烃在不同环境下生物降解性能研究[D]. 天津:天津大学,2018.
|
|
ZHOU Ling. Study on biodegradability of PCE and low chlorinated olefins in different environments[D]. Tianjin:Tianjin University,2018.
|
38 |
HWANG J W, CHOI Y B, PARK S,et al. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b[J]. Biodegradation, 2007, 18(1):91-101. doi: 10.1007/s10532-006-9040-3
|
39 |
VARZAGHANI N B, SHOKROLLAHZADEH S, FARAZMAND A. Biodegradation of tetrachloroethylene by a newly isolated aerobic Sphingopyxis ummariensis VR13[J]. Korean Journal of Chemical Engineering, 2019, 36(8):1305-1312. doi: 10.1007/s11814-019-0303-1
|
40 |
PHAM H, BOON N, MARZORATI M,et al. Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia[J]. Water Research, 2009, 43(11):2936-2946. doi: 10.1016/j.watres.2009.04.004
|
41 |
|
|
QIAN Limin. Isolation,identification and degradation characteristics of a TCE-degrading bacterium[D]. Beijing:Environmental Protection Institute of Light Industry, 2013. doi: 10.3724/sp.j.1145.2013.00851
|
42 |
KOENIG J, LEE M, MANEFIELD M. Aliphatic organochlorine degradation in subsurface environments[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(1):49-71. doi: 10.1007/s11157-014-9345-3
|
43 |
KANG J W, KHAN Z, DOTY S L. Biodegradation of trichloroethylene by an endophyte of hybrid poplar[J]. Applied and Environmental Microbiology, 2012, 78(9):3504-3507. doi: 10.1128/aem.06852-11
|
44 |
ELANGO V, KURTZ H D, FREEDMAN D L. Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates[J]. Chemosphere, 2011, 84(2):247-253. doi: 10.1016/j.chemosphere.2011.04.007
|
45 |
唐诗月,王晴,杨淼焱,等. 共代谢基质强化微生物修复四氯乙烯污染地下水[J]. 环境工程学报,2019,13(8):1893-1902.
|
|
TANG Shiyue, WANG Qing, YANG Miaoyan,et al. Co-substrates enhanced bioremediation of groundwater contaminated by tetrachloroethylene[J]. Chinese Journal of Environmental Engineering,2019,13(8):1893-1902.
|
46 |
ATASHGAHI S, LU Yue, RAMIRO-GARCIA J,et al. Geochemical parameters and reductive dechlorination determine aerobic cometabolic vs aerobic metabolic vinyl chloride biodegradation at oxic/anoxic interface of hyporheic zones[J]. Environmental Science & Technology, 2017, 51(3):1626-1634. doi: 10.1021/acs.est.6b05041
|
47 |
LI Hui, ZHANG Shiyang, WANG Xiaoli,et al. Aerobic biodegradation of trichloroethylene and phenol co-contaminants in groundwater by a bacterial community using hydrogen peroxide as the sole oxygen source[J]. Environmental Technology, 2015, 36(5/6/7/8):667-674. doi: 10.1080/09593330.2014.957730
|
48 |
ZHAO Heping, SCHMIDT K R, TIEHM A. Inhibition of aerobic metabolic cis-1,2-di-chloroethene biodegradation by other chloroethenes[J]. Water Research, 2010, 44(7):2276-2282. doi: 10.1016/j.watres.2009.12.023
|
49 |
XING Zhilin, SU Xia, ZHANG Xiaoping,et al. Direct aerobic oxidation(DAO) of chlorinated aliphatic hydrocarbons:A review of key DAO bacteria,biometabolic pathways and in situ bioremediation potential[J]. Environment International, 2022, 162:107165. doi: 10.1016/j.envint.2022.107165
|
50 |
XIAO Zhixing, JIANG Wei, CHEN Dan,et al. Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players:A review[J]. Ecotoxicology and Environmental Safety, 2020, 202:110925. doi: 10.1016/j.ecoenv.2020.110925
|
51 |
JI Changling, MENG Liang, WANG Hualin. Enhanced reductive dechlorination of 1,1,1-trichloroethane using zero-valent iron-biochar-carrageenan microspheres:Preparation and microcosm study[J]. Environmental Science and Pollution Research, 2019, 26(30):30584-30595. doi: 10.1007/s11356-018-1235-8
|
52 |
XIE Yankai, DONG Haoran, ZENG Guangming,et al. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment:A review[J]. Journal of Hazardous Materials, 2017, 321:390-407. doi: 10.1016/j.jhazmat.2016.09.028
|
53 |
WU Naijin, ZHANG Wen, WEI Wenxia,et al. Field study of chlorinated aliphatic hydrocarbon degradation in contaminated groundwater via micron zero-valent iron coupled with biostimulation[J]. Chemical Engineering Journal, 2020, 384:123349. doi: 10.1016/j.cej.2019.123349
|
54 |
ROSENTHAL H, ADRIAN L, STEIOF M. Dechlorination of PCE in the presence of Fe 0 enhanced by a mixed culture containing two Dehalococcoides strains[J]. Chemosphere, 2004, 55(5):661-669. doi: 10.1016/j.chemosphere.2003.11.053
|
55 |
CHEN Zhengzheng, TANG Xianjin, QIAO Wenjing,et al. Nanoscale zero-valent iron reduction coupled with anaerobic dechlorination to degrade hexachlorocyclohexane isomers in historically contaminated soil[J]. Journal of Hazardous Materials, 2020, 400:123298. doi: 10.1016/j.jhazmat.2020.123298
|
56 |
ZEMB O, LEE M,LOW A,et al. Reactive iron barriers:A niche enabling microbial dehalorespiration of 1,2-dichloroethane[J]. Applied Microbiology and Biotechnology, 2010, 88(1):319-325. doi: 10.1007/s00253-010-2740-y
|
57 |
KOCUR C M D, LOMHEIM L, BOPARAI H K,et al. Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection[J]. Environmental Science & Technology, 2015, 49(14):8648-8656. doi: 10.1021/acs.est.5b00719
|
58 |
KIRSCHLING T L, GREGORY K B, MINKLEY E G Jr,et al. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials[J]. Environmental Science & Technology, 2010, 44(9):3474-3480. doi: 10.1021/es903744f
|
59 |
MARTIN J E, HERZING A A, YAN Weile,et al. Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2008, 24(8):4329-4334. doi: 10.1021/la703689k
|
60 |
KUMAR N, MILLOT R, BATTAGLIA-BRUNET F,et al. Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations[J]. Environmental Science and Pollution Research, 2016, 23(6):5960-5968. doi: 10.1007/s11356-015-5712-z
|
61 |
孟宪荣,闫兴雨,魏晨军,等. 铁氮共改性MCM-41活化过硫酸盐去除地下水中1,2-二氯乙烷[J]. 环境科学学报,2024,44(1):265-274.
|
|
MENG Xianrong, YAN Xingyu, WEI Chenjun,et al. Removal of 1,2-dichloroethane from groundwater by persulfate activation with iron-nitrogen co-modified MCM-41[J]. Acta Scientiae Circumstantiae,2024,44(1):265-274.
|
62 |
梁成浩,黄乃宝,王华. 海水中硫酸盐还原菌对09Cr2AlMoRE钢的腐蚀行为[J]. 大连海事大学学报,2010,36(1):73-76.
|
|
LIANG Chenghao, HUANG Naibao, WANG Hua. Corrosion behavior of 09Cr2AlMoRE steel in seawater with sulfate-reducing bacteria[J]. Journal of Dalian Maritime University,2010,36(1):73-76.
|
63 |
周礼洋. 铁还原菌强化还原钝化零价铁降解地下水中氯代烃[D]. 上海:华东理工大学,2018.
|
|
ZHOU Liyang. Degradation of chlorinated hydrocarbons in groundwater by zero-valent iron with enhanced reduction and passivation by iron-reducing bacteria[D]. Shanghai:East China University of Science and Technology,2018.
|
64 |
YANG Zhilong, WANG Xiaoli, LI Hui,et al. Re-activation of aged-ZVI by iron-reducing bacterium Shewanella putrefaciens for enhanced reductive dechlorination of trichloroethylene[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(10):2642-2649. doi: 10.1002/jctb.5284
|
65 |
张海静,何银晖,肖武,等. 缓/控释技术在有机污染地下水修复的研究进展[J]. 地下水,2019,41(6):7-11.
|
|
ZHANG Haijing, HE Yinhui, XIAO Wu,et al. Research progress of organic pollution in groundwater with slow/controlled release technology[J]. Ground Water,2019,41(6):7-11.
|
66 |
SEECH A G, CAIRNS J E, MARVAN I J. Method for dehalogenation and degradation of halogenated organic contaminants:US5411664[P]. 1995-05-02.
|
67 |
AUFFAN M, ACHOUAK W, ROSE J,et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli [J]. Environmental Science & Technology, 2008, 42(17):6730-6735. doi: 10.1021/es800086f
|
68 |
BARZAN E, MEHRABIAN S, IRIAN S. Antimicrobial and genotoxicity effects of zero-valent iron nanoparticles[J]. Jundishapur Journal of Microbiology, 2014, 7(5):e10054. doi: 10.5812/jjm.10054
|
69 |
CHEN P J, WU Wanlin, WU K C W. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish[J]. Water Research, 2013, 47(12):3899-3909. doi: 10.1016/j.watres.2012.12.043
|
70 |
WANG Wenbing, WU Yanqing. Combination of zero-valent iron and anaerobic microorganisms immobilized in luffa sponge for degrading 1,1,1-trichloroethane and the relevant microbial community analysis[J]. Applied Microbiology and Biotechnology, 2017, 101(2):783-796. doi: 10.1007/s00253-016-7933-6
|
71 |
YE Jing, MAO Yacen, MENG Liang,et al. Polycaprolactone-modified biochar supported nanoscale zero-valent iron coupling with Shewanella putrefaciens CN32 for 1,1,1-trichloroethane removal from simulated groundwater:Synthesis,optimization,and mechanism[J]. Molecules, 2023, 28(7):3145. doi: 10.3390/molecules28073145
|
72 |
LEITÃO P, TUCCI M, CRUZ VIGGI C,et al. Natural magnetite minerals enhance 1,2-dichloroethane reductive dechlorination[J]. Minerals, 2022, 12(7):816. doi: 10.3390/min12070816
|
73 |
KOENIG J C, BOPARAI H K, LEE M J,et al. Particles and enzymes:Combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures[J]. Journal of Hazardous Materials, 2016, 308:106-112. doi: 10.1016/j.jhazmat.2015.12.036
|
74 |
SALOM D, FERNÁNDEZ-VERDEJO D, MORAL-VICO J,et al. Combining nanoscale zero-valent iron and anaerobic dechlorinating bacteria to degrade chlorinated methanes and 1,2-dichloroethane[J]. Environmental Science and Pollution Research, 2023, 30(15):45231-45243. doi: 10.1007/s11356-023-25376-z
|
75 |
LEITÃO P, AULENTA F, ROSSETTI S,et al. Impact of magnetite nanoparticles on the syntrophic dechlorination of 1,2-dichloroethane[J]. Science of the Total Environment, 2018, 624:17-23. doi: 10.1016/j.scitotenv.2017.12.110
|
76 |
吴乃瑾,宋云,魏文侠,等. 微米铁复合生物碳源对地下水中1,2-二氯乙烷的高效去除[J]. 环境科学,2019,40(3):1302-1309.
|
|
WU Naijin, SONG Yun, WEI Wenxia,et al. High efficiency removal of 1,2-dichloroethane from groundwater by microscale zero-valent iron combined with biological carbon source[J]. Environmental Science,2019,40(3):1302-1309.
|
77 |
邹莎莎. 零价铁/生物强化技术原位修复受氯代烯烃污染的地下水[J]. 净水技术,2023,42(S1):227-233.
|
|
ZOU Shasha. Remediation of groundwater contaminated with chlorinated alkenes in-situ by zero valent iron coupling with bioaugmentation[J]. Water Purification Technology,2023,42(S1):227-233.
|
78 |
刘乔丹,李辉,刘勇弟. 石墨烯介导铁还原菌耦合针铁矿体系降解四氯化碳[J]. 华东理工大学学报(自然科学版),2024,50(1):46-53.
|
|
LIU Qiaodan, LI Hui, LIU Yongdi. Degradation of carbon tetrachloride by graphene mediated iron-reducing bacteria coupled with goethite system[J]. Journal of East China University of Science and Technology,2024,50(1):46-53.
|
79 |
王玉欣,占敬敬. 硫化纳米零价铁协同生物法去除铬-三氯乙烯[J]. 应用化工,2022,51(11):3128-3132.
|
|
WANG Yuxin, ZHAN Jingjing. Synergistic biological removal of chromium-trichloroethylene by sulfidated nanoscale zerovalent iron[J]. Applied Chemical Industry,2022,51(11):3128-3132.
|