Abstract:
Aiming at the environmental pollution problems caused by vanadium-containing wastewater produced by mining, metallurgy, petroleum refining, and other industries, this study prepared mussel shells loaded nano-zero-valent iron composites(nZVI@CMS) by liquid-phase reduction method using pyrolyzed mussel shell powder(CMS) as the carrier. The morphology and structure of nZVI@CMS were characterized by SEM, TEM, XRD, BET, FT-IR and XPS. The adsorption performance of V(Ⅴ) on nZVI@CMS was investigated by batch adsorption experiments, and the adsorption mechanism of V(Ⅴ) on nZVI@CMS was analyzed using adsorption kinetics, adsorption isotherm, and adsorption thermodynamics. The results showed that nZVI@CMS was a loose and porous chain sphere-like structure containing a variety of oxygen-containing functional groups. The maximum adsorption of V(Ⅴ) by nZVI@CMS was 149.33 mg/g under the conditions of nZVI@CMS dosage of 0.05 g/L, initial pH=7, V(Ⅴ) concentration of 20 mg/L, solution volume of 100 mL, and temperature of 25 ℃. The adsorption of V(Ⅴ) by nZVI@CMS could be fitted by Langmuir adsorption isotherm equation and pseudo second-order reaction kinetic equation, and it was a spontaneous heat adsorption process. The main mechanisms of V(Ⅴ) removal by nZVI@CMS included adsorption, reduction, and co-precipitation. This study turned the mussel shells into treasure, and provided a new idea for the efficient treatment of V(Ⅴ) in wastewater.
Key words:
mussel shell,
liquid-phase synthesis,
nano zero-valent iron,
vanadium,
reduction
摘要:
针对采矿、冶金、石油炼制等行业产生的含钒废水导致的环境污染难题,以热解后的贻贝壳粉(CMS)为载体,通过液相还原法制备了贻贝壳负载纳米零价铁复合材料(nZVI@CMS),采用SEM、TEM、XRD、BET、FT-IR和XPS等对其进行了表征,通过批量吸附实验考察了nZVI@CMS对V(Ⅴ)的吸附性能,利用吸附动力学、吸附等温线和吸附热力学分析了nZVI@CMS对V(Ⅴ)的吸附机制。结果表明:nZVI@CMS具有疏松多孔的链球状结构,含有多种含氧官能团;在nZVI@CMS投加量0.05 g/L、初始pH=7、V(Ⅴ)初始质量浓度20 mg/L、溶液体积100 mL、温度25 ℃的条件下,nZVI@CMS在600 min内对V(Ⅴ)的最大吸附量为149.33 mg/g。nZVI@CMS对V(Ⅴ)的吸附过程可通过Langmuir吸附等温模型与准二级反应动力学方程拟合,且该过程是自发的吸热过程。nZVI@CMS对V(Ⅴ)的去除机制主要包括吸附、还原和共沉淀作用。本研究将贻贝壳变废为宝,同时为废水中V(Ⅴ)的高效治理提供了新思路。
关键词:
贻贝壳,
液相合成,
纳米零价铁,
钒,
还原
CLC Number:
Ran LI, Lili JI, Qianrui HE, Xiaoyue XIA, Yaning WANG. Properties and mechanism of V(Ⅴ) removal by mussel shells loaded with nano zero-valent iron[J]. Industrial Water Treatment, 2024, 44(9): 127-135.
李然, 纪丽丽, 何前锐, 夏晓月, 王亚宁. 贻贝壳负载纳米零价铁去除钒(Ⅴ)的性能与机制[J]. 工业水处理, 2024, 44(9): 127-135.