1 |
薛罡. 印染废水治理技术进展[J]. 工业水处理,2021,41(9):10-17. doi:10.19965/j.cnki.iwt.2021-0433
|
|
XUE Gang. Technology progress of dyeing wastewater treatment[J]. Industrial Water Treatment,2021,41(9):10-17. doi:10.19965/j.cnki.iwt.2021-0433
|
2 |
马慧婕,沈忱思,章耀鹏,等. 纺织工业产排污特征与水污染治理技术进展[J]. 环境科学研究,2020,33(11):2529-2539. doi:10.13198/j.issn.1001-6929.2020.10.02
|
|
MA Huijie, SHEN Chensi, ZHANG Yaopeng,et al. Production and pollution discharge characteristics and progress in the water pollution treatment technologies of the textile industry[J]. Research of Environmental Sciences,2020,33(11):2529-2539. doi:10.13198/j.issn.1001-6929.2020.10.02
|
3 |
ISMAIL G A, SAKAI H. Review on effect of different type of dyes on advanced oxidation processes(AOPs) for textile color removal[J]. Chemosphere,2022,291:132906. doi:10.1016/j.chemosphere.2021.132906
|
4 |
BILIŃSKA L, GMUREK M. Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic and synergistic actions[J]. Water Resources and Industry,2021,26:100160. doi:10.1016/j.wri.2021.100160
|
5 |
姜金宏,何席伟,熊晓敏,等. 纺织印染废水毒性特征与控制技术研究进展[J]. 工业水处理,2021,41(6):77-87. doi:10.11894/iwt.2021-0180
|
|
JIANG Jinhong, HE Xiwei, XIONG Xiaomin,et al. Research progress on toxicity characteristics and control technologies of textile dyeing wastewater[J]. Industrial Water Treatment,2021,41(6):77-87. doi:10.11894/iwt.2021-0180
|
6 |
RHADFI T, PIQUEMAL J Y, SICARD L,et al. Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts[J]. Applied Catalysis A:General,2010,386(1/2):132-139. doi:10.1016/j.apcata.2010.07.044
|
7 |
KIM E J,OH D, LEE C S,et al. Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH:Crystal phase-dependent behavior[J]. Catalysis Today,2017,282:71-76. doi:10.1016/j.cattod.2016.03.034
|
8 |
YAO Yunjin, CAI Yunmu, LU Fang,et al. Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants[J]. Journal of Hazardous Materials,2014,270:61-70. doi:10.1016/j.jhazmat.2014.01.027
|
9 |
YAO Yunjin, XU Chuan, YU Shaoming,et al. Facile synthesis of Mn3O4-reduced graphene oxide hybrids for catalytic decomposition of aqueous organics[J]. Industrial & Engineering Chemistry Research,2013,52(10):3637-3645. doi:10.1021/ie303220x
|
10 |
WAN Zhong, WANG Jianlong. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst[J]. Journal of Hazardous Materials,2017,324:653-664. doi:10.1016/j.jhazmat.2016.11.039
|
11 |
ZHAO Zhiwei, ZHAO Jianhui, YANG Chun. Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system[J]. Chemical Engineering Journal,2017,327:481-489. doi:10.1016/j.cej.2017.06.064
|
12 |
ZENG Fanyan, PAN Yang, YANG Yong,et al. Facile construction of Mn3O4-MnO2 hetero-nanorods/graphene nanocomposite for highly sensitive electrochemical detection of hydrogen peroxide[J]. Electrochimica Acta,2016,196:587-596. doi:10.1016/j.electacta.2016.03.031
|
13 |
SHAIK D P, PITCHERI R, QIU Yejun,et al. Hydrothermally synthesized porous Mn3O4 nanoparticles with enhanced electrochemical performance for supercapacitors[J]. Ceramics International,2019,45(2):2226-2233. doi:10.1016/j.ceramint.2018.10.135
|
14 |
XU Guorong, MIN Xiangping, CHEN Qiulian,et al. Sonochemical synthesis of a Mn3O4/MnOOH nanocomposite for electrochemical energy storage[J]. Journal of Alloys and Compounds,2017,691:1018-1023. doi:10.1016/j.jallcom.2016.08.309
|
15 |
HAO Xinli, ZHAO Jingzhe, ZHAO Yan,et al. Mild aqueous synthesis of urchin-like MnO x hollow nanostructures and their properties for RhB degradation[J]. Chemical Engineering Journal,2013,229:134-143. doi:10.1016/j.cej.2013.06.007
|
16 |
HU Longxing, DENG Guihua, LU Wencong,et al. Peroxymonosulfate activation by Mn3O4/metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B[J]. Chinese Journal of Catalysis,2017,38(8):1360-1372. doi:10.1016/s1872-2067(17)62875-4
|
17 |
白孟琦,李敏睿,丁欣欣,等. 不同猝灭剂对SO4 ·-和·OH高级氧化体系的猝灭效果[J]. 工业水处理,2021,41(8):75-80. doi:10.19965/j.cnki.iwt.2020-1050
|
|
BAI Mengqi, LI Minrui, DING Xinxin,et al. Quenching effect of different quenchers on SO4 ·- and ·OH based advanced oxidation processes[J]. Industrial Water Treatment,2021,41(8):75-80. doi:10.19965/j.cnki.iwt.2020-1050
|
18 |
WANG Lingli, LAN Xu, PENG Wenya,et al. Uncertainty and misinterpretation over identification,quantification and transformation of reactive species generated in catalytic oxidation processes:A review[J]. Journal of Hazardous Materials,2021,408:124436. doi:10.1016/j.jhazmat.2020.124436
|
19 |
QI Chengdu, LIU Xitao, MA Jun,et al. Activation of peroxymonosulfate by base:Implications for the degradation of organic pollutants[J]. Chemosphere,2016,151:280-288. doi:10.1016/j.chemosphere.2016.02.089
|
20 |
LUO Rui, LI Miaoqing, WANG Chaohai,et al. Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition[J]. Water Research,2019,148:416-424. doi:10.1016/j.watres.2018.10.087
|
21 |
LIU Qiaoran, DUAN Xiaoguang, SUN Hongqi,et al. Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation[J]. The Journal of Physical Chemistry C,2016,120(30):16871-16878. doi:10.1021/acs.jpcc.6b05934
|
22 |
HUANG Jianzhi, ZHANG Huichun. Mn-based catalysts for sulfate radical-based advanced oxidation processes:A review[J]. Environment International,2019,133:105141. doi:10.1016/j.envint.2019.105141
|
23 |
SAPUTRA E, MUHAMMAD S, SUN Hongqi,et al. A comparative study of spinel structured Mn3O4,Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions[J]. Journal of Colloid and Interface Science,2013,407:467-473. doi:10.1016/j.jcis.2013.06.061
|