1 |
SCHWARZENBACH R P, ESCHER B I, FENNER K,et al. The challenge of micropollutants in aquatic systems[J]. Science, 2006, 313(5790):1072-1077. doi: 10.1126/science.1127291
|
2 |
衣晓虹,王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3):471-489. doi: 10.7536/PC200562
|
|
YI Xiaohong, WANG Chongchen. Elimination of emerging organic contaminants in wastewater by advanced oxidation process over iron-based MOFs and their composites[J]. Progress in Chemistry, 2021, 33(3):471-489. doi: 10.7536/PC200562
|
3 |
|
|
HU Chengzhi, LIU Huijuan, QU Jiuhui. Research progress of electrochemical technologies for water treatment[J]. Chinese Journal of Environmental Engineering, 2018, 12(3):677-696. doi: 10.12030/j.cjee.201801179
|
4 |
LIU Yanbiao, GAO Guandao, VECITIS C D. Prospects of an electroactive carbon nanotube membrane toward environmental applications[J]. Accounts of Chemical Research, 2020, 53(12):2892-2902. doi: 10.1021/acs.accounts.0c00544
|
5 |
陈子杨,黄胜,余健. 三维电极-电Fenton处理毒死蜱废水研究[J]. 工业水处理,2022,42(4):132-137.
|
|
CHEN Ziyang, HUANG Sheng, YU Jian. Study on treatment of chlorpyrifos wastewater by three-dimensional electrode-electro-Fenton process[J]. Industrial Water Treatment,2022,42(4):132-137.
|
6 |
LIN Hui, XIAO Runlin, XIE Ruzhen,et al. Defect engineering on a Ti 4O 7 electrode by Ce 3+ doping for the efficient electrooxidation of perfluorooctanesulfonate[J]. Environmental Science & Technology, 2021, 55(4):2597-2607. doi: 10.1021/acs.est.0c06881
|
7 |
GUO Dongli, YOU Shijie, LI Fang,et al. Engineering carbon nanocatalysts towards efficient degradation of emerging organic contaminants via persulfate activation:A review[J]. Chinese Chemical Letters, 2022, 33(1):1-10. doi: 10.1016/j.cclet.2021.06.027
|
8 |
KO J S, MENG Poyu, ELAZAR-MITTELMAN H,et al. Rapid carbothermal shock enhances the double-layer response of graphene oxide-carbon nanotube electrodes[J]. Energy & Fuels, 2021, 35(21):17919-17929. doi: 10.1021/acs.energyfuels.1c02450
|
9 |
WAN Li, SHAMSAEI E, EASTON C D,et al. ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor[J]. Carbon, 2017, 121:330-336. doi: 10.1016/j.carbon.2017.06.017
|
10 |
LIU Lie, XU Yan, WANG Kunpeng,et al. Fabrication of a novel conductive ultrafiltration membrane and its application for electrochemical removal of hexavalent chromium[J]. Journal of Membrane Science, 2019, 584:191-201. doi: 10.1016/j.memsci.2019.05.018
|
11 |
GAO Guandao, VECITIS C D. Reactive depth and performance of an electrochemical carbon nanotube network as a function of mass transport[J]. ACS Applied Materials & Interfaces, 2012, 4(11):6096-6103. doi: 10.1021/am301724n
|
12 |
DING Li, WEI Yanying, LI Libo,et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9:155. doi: 10.1038/s41467-017-02529-6
|
13 |
|
|
ZHOU Chao, WU Donghai, LU Guanghua,et al. Research progress in the chemical control over membrane fouling in membrane water treatment[J]. Industrial Water Treatment, 2019, 39(2):6-10. doi: 10.11894/1005-829x.2019.39(2).006
|
14 |
|
|
ZENG Guangyong, WANG Bin, ZHANG Jun,et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(7):2078-2091. doi: 10.13801/j.cnki.fhclxb.20210330.001
|
15 |
HAN Runlin, XIE Yongli, MA Xufeng. Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity[J]. Chinese Journal of Chemical Engineering, 2019, 27(4):877-883. doi: 10.1016/j.cjche.2018.10.005
|
16 |
ARSHADI F, MOHAMMAD M, HOSSEINI E,et al. The effect of D-spacing on the ion selectivity performance of MXene membrane[J]. Journal of Membrane Science, 2021, 639:119752. doi: 10.1016/j.memsci.2021.119752
|
17 |
李若,尤世界,刘艳彪. 电活性碳纳米管膜水质净化原理与应用研究进展[J]. 中国给水排水,2022,38(4):63-70.
|
|
LI Ruo, YOU Shijie, LIU Yanbiao. Advances on principles and applications of electroactive carbon nanotube membrane toward water purification[J]. China Water & Wastewater,2022,38(4):63-70.
|
18 |
ZHANG Ruyue, LIU Jiang, LI Yingchun. MXene with great adsorption ability toward organic dye:An excellent material for constructing a ratiometric electrochemical sensing platform[J]. ACS Sensors, 2019, 4(8):2058-2064. doi: 10.1021/acssensors.9b00654
|
19 |
SUN Yuqing, LI Shilong, ZHUANG Yongxiang,et al. Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection[J]. Journal of Membrane Science, 2019, 591:117350. doi: 10.1016/j.memsci.2019.117350
|
20 |
|
|
ZHANG Jianhui, ZHOU Jinya, LIN Haibo,et al. MXene-coated mesh membrane with underwater superoleophobicity for high-efficiency oil water separation[J]. Chemical Journal of Chinese Universities, 2019, 40(4):624-631. doi: 10.7503/cjcu20190025
|
21 |
DING Li, WEI Yanying, WANG Yanjie,et al. A two-dimensional lamellar membrane:MXene nanosheet stacks[J]. Angewandte Chemie(International Ed. in English), 2017, 56(7):1825-1829. doi: 10.1002/anie.201609306
|
22 |
XU Mengsi, ZHAO Pin, TANG C Y,et al. Preparation of electrically enhanced forward osmosis(FO) membrane by two-dimensional MXenes for organic fouling mitigation[J]. Chinese Chemical Letters, 2022, 33(8):3818-3822. doi: 10.1016/j.cclet.2021.11.071
|
23 |
ZARSHENAS K, DOU Haozhen, HABIBPOUR S,et al. Thin film polyamide nanocomposite membrane decorated by polyphenol-assisted Ti 3C 2T x MXene nanosheets for reverse osmosis[J]. ACS Applied Materials & Interfaces, 2022, 14(1):1838-1849. doi: 10.1021/acsami.1c16229
|
24 |
WANG Qinhua, PAN Xiaofeng, LIN Changmei,et al. Modified Ti 3C 2T x (MXene) nanosheet-catalyzed self-assembled,anti-aggregated,ultra-stretchable,conductive hydrogels for wearable bioelectronics[J]. Chemical Engineering Journal, 2020, 401:126129. doi: 10.1016/j.cej.2020.126129
|
25 |
LU Zong, WEI Yanying, DENG Junjie,et al. Self-crosslinked MXene(Ti 3C 2T x ) membranes with good antiswelling property for monovalent metal ion exclusion[J]. ACS Nano, 2019, 13(9):10535-10544. doi: 10.1021/acsnano.9b04612
|
26 |
DING Mingmei, XU Hang, CHEN Wei,et al. 2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination[J]. Journal of Membrane Science, 2020, 600:117871. doi: 10.1016/j.memsci.2020.117871
|
27 |
|
|
HU Junyi, LI Shiyou, HE Junqin,et al. Research progress of new two-dimensional MXene materials for heavy metals adsorption[J]. Industrial Water Treatment, 2022, 42(6):116-124. doi: 10.19965/j.cnki.iwt.2021-0388
|
28 |
YANG Qi, BAO Xin, LI Ziying,et al. Visible-light-enhanced Cr(Ⅵ) reduction and bioelectricity generation at MXene photocathode in photoelectrocatalytic microbial fuel cells[J]. Journal of Water Process Engineering, 2022, 45:102454. doi: 10.1016/j.jwpe.2021.102454
|
29 |
KARTHIKEYAN P, RAMKUMAR K, PANDI K,et al. Effective removal of Cr(Ⅵ) and methyl orange from the aqueous environment using two-dimensional(2D) Ti 3C 2T x MXene nanosheets[J]. Ceramics International, 2021, 47(3):3692-3698. doi: 10.1016/j.ceramint.2020.09.221
|
30 |
DASHTBOZORG A, SALJOUGHI E, MOUSAVI S M,et al. High-performance and robust polysulfone nanocomposite membrane containing 2D functionalized MXene nanosheets for the nanofiltration of salt and dye solutions[J]. Desalination, 2022, 527:115600. doi: 10.1016/j.desal.2022.115600
|
31 |
LIU Fuqiang, LIU Yanbiao, SHEN Chensi,et al. One-step phosphite removal by an electroactive CNT filter functionalized with TiO 2/CeO x nanocomposites[J]. Science of the Total Environment, 2020, 710:135514. doi: 10.1016/j.scitotenv.2019.135514
|
32 |
LI Zhongkun, LIU Yanchang, LI Libo,et al. Ultra-thin titanium carbide(MXene) sheet membranes for high-efficient oil/water emulsions separation[J]. Journal of Membrane Science, 2019, 592:117361. doi: 10.1016/j.memsci.2019.117361
|
33 |
ZHANG Haijun, WANG Zhanhui, SHEN Yongqian,et al. Ultrathin 2D Ti 3C 2T x MXene membrane for effective separation of oil-in-water emulsions in acidic,alkaline,and salty environment[J]. Journal of Colloid and Interface Science, 2020, 561:861-869. doi: 10.1016/j.jcis.2019.11.069
|
34 |
ZHANG Li, KAN Xiaonan, HUANG Tao,et al. Electric field modulated water permeation through laminar Ti 3C 2T x MXene membrane[J]. Water Research, 2022, 219:118598. doi: 10.1016/j.watres.2022.118598
|
35 |
FAN Yiyi, LI Jinyong, WANG Saidi,et al. Voltage-enhanced ion sieving and rejection of Pb 2+ through a thermally cross-linked two-dimensional MXene membrane[J]. Chemical Engineering Journal, 2020, 401:126073. doi: 10.1016/j.cej.2020.126073
|
36 |
DIXIT F, ZIMMERMANN K, DUTTA R,et al. Application of MXenes for water treatment and energy-efficient desalination:A review[J]. Journal of Hazardous Materials, 2022, 423:127050. doi: 10.1016/j.jhazmat.2021.127050
|
37 |
SHEN Xiaojie, LI Liqing, XIONG Yuecheng,et al. Graphene-assisted Ti 3C 2 MXene-derived ultrathin sodium titanate for capacitive deionization with excellent rate performance and long cycling stability,2022, 10:10192-10200. doi: 10.1039/d2ta00449f
|
38 |
JIN Limin, YOU Shijie, YAO Yuan,et al. An electroactive single-atom copper anchored MXene nanohybrid filter for ultrafast water decontamination[J]. Journal of Materials Chemistry A, 2021, 9(46):25964-25973. doi: 10.1039/d1ta07396f
|
39 |
XIA Yan, YANG Fan, ZHANG Bing,et al. Fabrication of novel FeS 2 NWs/Ti 3C 2 cathode for photo-electro-Fenton degradation of sulfamethazine[J]. Chemical Engineering Journal, 2021, 426:130719. doi: 10.1016/j.cej.2021.130719
|
40 |
ZHANG Qi, FU Zengjie, YU Hongtao,et al. Nanoplating of a SnO 2 thin-film on MXene-based sponge for stable and efficient solar energy conversion[J]. Journal of Materials Chemistry, 2020, 8:8065-8074. doi: 10.1039/d0ta01258k
|