1 |
孙宁,王兆苏,卢然,等. “十三五”重金属污染综合防治思路和对策研究[J]. 环境保护科学,2016,42(2):1-7.
|
|
SUN Ning, WANG Zhaosu, LU Ran,et al. Study of ideas and countermeasures of comprehensive prevention and control of heavy metal pollution during the 13th five-year plan period[J]. Environmental Protection Science,2016,42(2):1-7.
|
2 |
|
|
Ministry of Ecology and Environment of the People’s Republic of China. Opinions on further strengthening the prevention and control of heavy metal pollution[J]. Resource Recycling, 2022(3):54-57. doi: 10.3969/j.issn.1673-7776.2022.03.024
|
3 |
|
|
MENG Zhiye, DU Ying. Research on the development trend of environmental protection industry under the 14th Five-Year Plan[J]. Resources Economization & Environmental Protection, 2021(11):140-142. doi: 10.3969/j.issn.1673-2251.2021.11.045
|
4 |
CHEN Quan, ZHENG Jiewei, ZHENG Liuchun,et al. Classical theory and electron-scale view of exceptional Cd(Ⅱ) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations[J]. Chemical Engineering Journal, 2018, 350:1000-1009. doi: 10.1016/j.cej.2018.06.054
|
5 |
XU Yaolei, CHEN Jinyi, CHEN Ran,et al. Adsorption and reduction of chromium(Ⅵ) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent[J]. Water Research, 2019, 160:148-157. doi: 10.1016/j.watres.2019.05.055
|
6 |
罗相萍,游少鸿,刘崇敏,等. LDHs及其复合材料处理重金属废水的研究进展[J]. 工业水处理,2022,42(2):51-59.
|
|
LUO Xiangping, YOU Shaohong, LIU Chongmin,et al. Research progress on treatment of heavy metal wastewater by layered double hydroxides and their composites[J]. Industrial Water Treatment,2022,42(2):51-59.
|
7 |
秦笑梅,杨世豪,王恒栋. 聚合物基复合材料去除水中重金属污染的研究进展[J]. 工业水处理,2021,41(11):16-22.
|
|
QIN Xiaomei, YANG Shihao, WANG Hengdong. Research progress of polymer composites for the removal of heavy metal pollution in water[J]. Industrial Water Treatment,2021,41(11):16-22.
|
8 |
|
|
HU Junyi, LI Shiyou, HE Junqin,et al. Research progress of new two-dimensional MXene materials for heavy metals adsorption[J]. Industrial Water Treatment, 2022, 42(6):116-124. doi: 10.19965/j.cnki.iwt.2021-0388
|
9 |
SINGH N B, NAGPAL G, AGRAWAL S,et al. Water purification by using Adsorbents:A Review[J]. Environmental Technology & Innovation, 2018, 11:187-240. doi: 10.1016/j.eti.2018.05.006
|
10 |
HU Huiqin, REN Zhong, XI Yu,et al. Insights into the role of cross-linking agents on polymer template effect:A case study of anionic imprinted polymers[J]. Chemical Engineering Journal, 2021, 420:129611. doi: 10.1016/j.cej.2021.129611
|
11 |
XI Yu, SHI Hui, LIU Ru,et al. Insights into ion imprinted membrane with a delayed permeation mechanism for enhancing Cd 2+ selective separation[J]. Journal of Hazardous Materials, 2021, 416:125772. doi: 10.1016/j.jhazmat.2021.125772
|
12 |
DU Xiao, ZHANG Hao, HAO Xiaogang,et al. Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel(Ⅱ) ions[J]. ACS Applied Materials & Interfaces, 2014, 6(12):9543-9549. doi: 10.1021/am501926u
|
13 |
WANG Xiaowei, ZHANG Liang, MA Cailian,et al. Enrichment and separation of silver from waste solutions by metal ion imprinted membrane[J]. Hydrometallurgy, 2009, 100(1/2):82-86. doi: 10.1016/j.hydromet.2009.10.006
|
14 |
LUO Xubiao, XI Yu, YU Haiyan,et al. Capturing cadmium(Ⅱ) ion from wastewater containing solid particles and floccules using ion-imprinted polymers with broom effect[J]. Industrial & Engineering Chemistry Research, 2017, 56(9):2350-2358. doi: 10.1021/acs.iecr.6b04030
|
15 |
FANG Lili, DING Lin, REN Wei,et al. High exposure effect of the adsorption site significantly enhanced the adsorption capacity and removal rate:A case of adsorption of hexavalent chromium by quaternary ammonium polymers(QAPs)[J]. Journal of Hazardous Materials, 2021, 416:125829. doi: 10.1016/j.jhazmat.2021.125829
|
16 |
HE Fan, LU Ziyang, SONG Minshan,et al. Selective reduction of Cu 2+ with simultaneous degradation of tetracycline by the dual channels ion imprinted POPD-CoFe 2O 4 heterojunction photocatalyst[J]. Chemical Engineering Journal, 2019, 360:750-761. doi: 10.1016/j.cej.2018.12.034
|
17 |
LIU Weifeng, AN Zhuolin, QIN Lei,et al. Construction of a novel ion imprinted film to remove low concentration Cu 2+ from aqueous solution[J]. Chemical Engineering Journal, 2021, 411:128477. doi: 10.1016/j.cej.2021.128477
|
18 |
MONIER M, ELSAYED N H, ABDEL-LATIF D A. Synthesis and application of ion-imprinted resin based on modified melamine-thiourea for selective removal of Hg(Ⅱ)[J]. Polymer International, 2015, 64(10):1465-1474. doi: 10.1002/pi.4942
|
19 |
WANG Jingjing, WEI Jun, LI Juan. Straw-supported ion imprinted polymer sorbent prepared by surface imprinting technique combined with AGET ATRP for selective adsorption of La 3+ ions[J]. Chemical Engineering Journal, 2016, 293:24-33. doi: 10.1016/j.cej.2016.02.051
|
20 |
ZHOU Guangzhu, WU Sai, ZHOU Runsheng,et al. Synthesis of ion imprinted magnetic nanocomposites and application for novel selective recycling of Ni(Ⅱ)[J]. Journal of Cleaner Production, 2021, 314:127999. doi: 10.1016/j.jclepro.2021.127999
|
21 |
HE Junnan, SHANG Hongzhou, ZHANG Xing,et al. Synthesis and application of ion imprinting polymer coated magnetic multi-walled carbon nanotubes for selective adsorption of nickel ion[J]. Applied Surface Science, 2018, 428:110-117. doi: 10.1016/j.apsusc.2017.09.123
|
22 |
ZHU Chao, HU Tianjue, TANG Lin,et al. Highly efficient extraction of lead ions from smelting wastewater,slag and contaminated soil by two-dimensional montmorillonite-based surface ion imprinted polymer absorbent[J]. Chemosphere, 2018, 209:246-257. doi: 10.1016/j.chemosphere.2018.06.105
|
23 |
JAKAVULA S, BIATA N R, DIMPE K M,et al. Magnetic ion imprinted polymers(MIIPs) for selective extraction and preconcentration of Sb(Ⅲ) from environmental matrices[J]. Polymers, 2021, 14(1):21. doi: 10.3390/polym14010021
|
24 |
AYERS P W, PARR R G, PEARSON R G. Elucidating the hard/soft acid/base principle:A perspective based on half-reactions[J]. The Journal of Chemical Physics, 2006, 124(19):194107. doi: 10.1063/1.2196882
|
25 |
JANSONE-POPOVA S, MOINEL A, SCHOTT J A,et al. Guanidinium-based ionic covalent organic framework for rapid and selective removal of toxic Cr(Ⅵ) oxoanions from water[J]. Environmental Science & Technology, 2019, 53(2):878-883. doi: 10.1021/acs.est.8b04215
|
26 |
KIM Y, LIN Zhou, JEON I,et al. Polyaniline nanofiber electrodes for reversible capture and release of mercury(Ⅱ) from water[J]. Journal of the American Chemical Society, 2018, 140(43):14413-14420. doi: 10.1021/jacs.8b09119
|
27 |
LIU Xiang, YANG Liming, LUO Xubiao,et al. A novel non-imprinted adsorbent with superior selectivity towards high-performance capture of Ag(Ⅰ)[J]. Chemical Engineering Journal, 2018, 348:224-231. doi: 10.1016/j.cej.2018.04.179
|
28 |
SUN D T, PENG Li, REEDER W S,et al. Rapid,selective heavy metal removal from water by a metal-organic framework/polydopamine composite[J]. ACS Central Science, 2018, 4(3):349-356. doi: 10.1021/acscentsci.7b00605
|
29 |
PAN Xiaohan, ZU Jianhua, DIAO Jingjie,et al. Rapid and selective recovery of Ag(Ⅰ) from simulative electroplating effluents by sulfydryl-rich covalent organic framework(COF-SH) with high adsorption capacity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 648:129156. doi: 10.1016/j.colsurfa.2022.129156
|
30 |
YIN Xiaocui, LONG Jian, XI Yu,et al. Recovery of silver from wastewater using a new magnetic photocatalytic ion-imprinted polymer[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3):2090-2097. doi: 10.1021/acssuschemeng.6b01871
|
31 |
CHOUDHARY B C, PAUL D, BORSE A U,et al. Surface functionalized biomass for adsorption and recovery of gold from electronic scrap and refinery wastewater[J]. Separation and Purification Technology, 2018, 195:260-270. doi: 10.1016/j.seppur.2017.12.024
|
32 |
KIM S, PARK S, HAN S,et al. Silanol-rich ordered mesoporous silica modified thiol group for enhanced recovery performance of Au(Ⅲ) in acidic leachate solution[J]. Chemical Engineering Journal, 2018, 351:1027-1037. doi: 10.1016/j.cej.2018.06.136
|
33 |
TANG Jiali, ZHAO Jiling, WANG Shixing,et al. Pre-modification strategy to prepare a novel Zr-based MOF for selective adsorption of Palladium(Ⅱ) from solution[J]. Chemical Engineering Journal, 2021, 407:127223. doi: 10.1016/j.cej.2020.127223
|
34 |
TANG Jiali, CHEN Yingbi, ZHAO Minghu,et al. Phenylthiosemicarbazide-functionalized UiO-66-NH 2 as highly efficient adsorbent for the selective removal of lead from aqueous solutions[J]. Journal of Hazardous Materials, 2021, 413:125278. doi: 10.1016/j.jhazmat.2021.125278
|
35 |
LEE H K, CHOI J W, CHOI S J. Magnetic ion-imprinted polymer based on mesoporous silica for selective removal of Co(Ⅱ) from radioactive wastewater[J]. Separation Science and Technology, 2021, 56(11):1842-1852. doi: 10.1080/01496395.2020.1797798
|
36 |
NICOMEL N R, OTERO-GONZALEZ L, FOLENS K,et al. Selective and enhanced nickel adsorption from sulfate- and calcium-rich solutions using chitosan[J]. Separation and Purification Technology, 2021, 276:119283. doi: 10.1016/j.seppur.2021.119283
|
37 |
LI Zuyu, GUO Shuangzhen, LI Da,et al. Selective adsorption behavior of Cd 2+ imprinted acrylamide-crosslinked-poly(alginic acid) magnetic polymers:Fabrication,characterization,adsorption performance and mechanism[J]. Water Science and Technology, 2021, 83(2):449-462. doi: 10.2166/wst.2020.593
|
38 |
ZHAO Nan, ZHAO Chuanfang, TSANG D C W,et al. Microscopic mechanism about the selective adsorption of Cr(Ⅵ) from salt solution on O-rich and N-rich biochars[J]. Journal of Hazardous Materials, 2021, 404:124162. doi: 10.1016/j.jhazmat.2020.124162
|
39 |
YOU Deng, MIN Xiaoye, LIU Lingling,et al. New insight on the adsorption capacity of metallogels for antimonite and antimonate removal:From experimental to theoretical study[J]. Journal of Hazardous Materials, 2018, 346:218-225. doi: 10.1016/j.jhazmat.2017.12.035
|
40 |
|
41 |
LIU Chong, WU Tong, HSU P C,et al. Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode[J]. ACS Nano, 2019, 13(6):6431-6437. doi: 10.1021/acsnano.8b09301
|
42 |
KIM K, RAYMOND D, CANDEAGO R,et al. Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control[J]. Nature Communications, 2021, 12:6554. doi: 10.1038/s41467-021-26814-7
|
43 |
SU Xiao, KUSHIMA A, HALLIDAY C,et al. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water[J]. Nature Communications, 2018, 9:4701. doi: 10.1038/s41467-018-07159-0
|
44 |
YANG Liming, YI Genping, WANG Bo,et al. Atomic H* enhanced electrochemical recovery towards high-value-added metallic Sb from complex mine flotation wastewater[J]. Resources,Conservation and Recycling, 2022, 178:106020. doi: 10.1016/j.resconrec.2021.106020
|
45 |
JIN Wei, DU Hao, YAN Kai,et al. Improved electrochemical Cr(Ⅵ) detoxification by integrating the direct and indirect pathways[J]. Journal of Electroanalytical Chemistry, 2016, 775:325-328. doi: 10.1016/j.jelechem.2016.06.030
|
46 |
YIN Xiaocui, SHAO Penghui, DING Lin,et al. Protonation of rhodanine polymers for enhancing the capture and recovery of Ag + from highly acidic wastewater[J]. Environmental Science:Nano, 2019, 6(11):3307-3315. doi: 10.1039/c9en00833k
|
47 |
ZHANG Xiaolin, HUANG Ping, ZHU Siyao,et al. Nanoconfined hydrated zirconium oxide for selective removal of Cu(Ⅱ)-carboxyl complexes from high-salinity water via ternary complex formation[J]. Environmental Science & Technology, 2019, 53(9):5319-5327. doi: 10.1021/acs.est.9b00745
|
48 |
ZHAO Xu, GUO Libao, HU Chengzhi,et al. Simultaneous destruction of Nickel(Ⅱ)-EDTA with TiO 2/Ti film anode and electrodeposition of nickel ions on the cathode[J]. Applied Catalysis B:Environmental, 2014, 144:478-485. doi: 10.1016/j.apcatb.2013.07.038
|
49 |
YU Haiyan, SHAO Penghui, FANG Lili,et al. Palladium ion-imprinted polymers with PHEMA polymer brushes:Role of grafting polymerization degree in anti-interference[J]. Chemical Engineering Journal, 2019, 359:176-185. doi: 10.1016/j.cej.2018.11.149
|
50 |
CHANG Ziwen, YANG Liming, ZHANG Kai,et al. Weak electric field enabling enhanced selectivity of tannic acid-graphene aerogels for Pb 2+ harvesting from wastewater[J]. Chemical Engineering Journal, 2021, 416:129144. doi: 10.1016/j.cej.2021.129144
|
51 |
WANG Dong, SONG Jianan, WEN Jun,et al. Uranium extraction:Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent[J]. Advanced Energy Materials, 2018, 8(33):1870143. doi: 10.1002/aenm.201870143
|
52 |
WU Tong, LIU Chong, KONG Biao,et al. Amidoxime-functionalized macroporous carbon self-refreshed electrode materials for rapid and high-capacity removal of heavy metal from water[J]. ACS Central Science, 2019, 5(4):719-726. doi: 10.1021/acscentsci.9b00130
|
53 |
FU Kaixing, LIU Xia, LV Chunyu,et al. Superselective Hg(Ⅱ) removal from water using a thiol-laced MOF-based sponge monolith:Performance and mechanism[J]. Environmental Science & Technology, 2022, 56(4):2677-2688. doi: 10.1021/acs.est.1c07480
|
54 |
WANG Zhongying, TU Qingsong,SIM A,et al. Superselective removal of lead from water by two-dimensional MoS 2 nanosheets and layer-stacked membranes[J]. Environmental Science & Technology, 2020, 54(19):12602-12611. doi: 10.1021/acs.est.0c02651
|
55 |
PAN Meilan, SHAN Chao, ZHANG Xiaolin,et al. Environmentally friendly in situ regeneration of graphene aerogel as a model conductive adsorbent[J]. Environmental Science & Technology, 2018, 52(2):739-746. doi: 10.1021/acs.est.7b02795
|
56 |
LIU Tian, YUAN Jili, ZHANG Bo,et al. Removal and recovery of uranium from groundwater using direct electrochemical reduction method:Performance and implications[J]. Environmental Science & Technology, 2019, 53(24):14612-14619. doi: 10.1021/acs.est.9b06790
|
57 |
DOULAKAS L, NOVY K, STUCKI S,et al. Recovery of Cu,Pb,Cd and Zn from synthetic mixture by selective electrodeposition in chloride solution[J]. Electrochimica Acta, 2000, 46(2/3):349-356. doi: 10.1016/s0013-4686(00)00591-0
|
58 |
ZHAO Xu, GUO Libao, QU Jiuhui. Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor[J]. Chemical Engineering Journal, 2014, 239:53-59. doi: 10.1016/j.cej.2013.10.088
|
59 |
WU Caicai, GAO Jing, LIU Youzhi,et al. High-gravity intensified electrodeposition for efficient removal of Cd 2+ from heavy metal wastewater[J]. Separation and Purification Technology, 2022, 289:120809. doi: 10.1016/j.seppur.2022.120809
|
60 |
ZHANG Lingen, XU Zhenming, HE Zhen. Selective recovery of lead and zinc through controlling cathodic potential in a bioelectrochemically-assisted electrodeposition system[J]. Journal of Hazardous Materials, 2020, 386:121941. doi: 10.1016/j.jhazmat.2019.121941
|
61 |
SHAO Penghui, ZHOU Xiaoyu, CAO Ying,et al. Understanding role of reactor configuration in electrochemical de complexation of Ni-EDTA via experiments and simulations[J]. Environmental Functional Materials, 2022, 1(2):149-159. doi: 10.1016/j.efmat.2022.07.001
|