1 |
LETTINGA G, VAN VELSEN A F M, HOBMA S W,et al. Use of the upflow sludge blanket(USB) reactor concept for biological wastewater treatment,especially for anaerobic treatment[J]. Biotechnology and Bioengineering, 1980, 22(4):699-734. doi: 10.1002/bit.260220402
|
2 |
YANG Shufang, TAY J H, LIU Yu. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater[J]. Journal of Biotechnology, 2003, 106(1):77-86. doi: 10.1016/j.jbiotec.2003.07.007
|
3 |
MISHIMA K, NAKAMURA M. Self-immobilization of aerobic activated sludge:A pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment[J]. Water Science and Technology, 1991, 23(4/5/6):981-990. doi: 10.2166/wst.1991.0550
|
4 |
周律,钱易. 好氧颗粒污泥的形成和技术条件[J]. 给水排水,1995,21(4):11-13.
|
|
ZHOU Lü, QIAN Yi. Formation and technical conditions of aerobic sludge pellet[J]. Water & Wastewater Engineering,1995,21(4):11-13.
|
5 |
MORGENROTH E, SHERDEN T, VAN LOOSDRECHT M C M,et al. Aerobic granular sludge in a sequencing batch reactor[J]. Water Research, 1997, 31(12):3191-3194. doi: 10.1016/s0043-1354(97)00216-9
|
6 |
PENG Dangcong, BERNET N, DELGENES J P,et al. Aerobic granular sludge:A case report[J]. Water Research, 1999, 33(3):890-893. doi: 10.1016/s0043-1354(98)00443-6
|
7 |
BATHE S, DE KREUK M, MCSWAIN B S,et al. Aerobic granular sludge[M]. London:IWA Publishing,2007:155-157.
|
8 |
|
|
|
9 |
DE KREUK M K, VAN LOOSDRECHT M C M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability[J]. Water Science and Technology, 2004, 49(11/12):9-17. doi: 10.2166/wst.2004.0792
|
10 |
LIU Yongqiang, WU Weiwei, TAY J H,et al. Starvation is not a prerequisite for the formation of aerobic granules[J]. Applied Microbiology and Biotechnology, 2007, 76(1):211-216. doi: 10.1007/s00253-007-0979-8
|
11 |
HAAKSMAN V A, MIRGHORAYSHI M, VAN LOOSDRECHT M C M,et al. Impact of aerobic availability of readily biodegradable COD on morphological stability of aerobic granular sludge[J]. Water Research, 2020, 187:116402. doi: 10.1016/j.watres.2020.116402
|
12 |
XIA Liping, ZHANG Hanmin, WANG Xinhua. An effective way to select slow-growing nitrifying bacteria by providing a dynamic environment[J]. Bioprocess and Biosystems Engineering, 2007, 30(6):383-388. doi: 10.1007/s00449-006-0102-z
|
13 |
SHENG Guoping, LI Anjie, LI Xiaoyan,et al. Effects of seed sludge properties and selective biomass discharge on aerobic sludge granulation[J]. Chemical Engineering Journal, 2010, 160(1):108-114. doi: 10.1016/j.cej.2010.03.017
|
14 |
GAO Dawen, LIU Lin, LIANG Hong,et al. Comparison of four enhancement strategies for aerobic granulation in sequencing batch reactors[J]. Journal of Hazardous Materials, 2011, 186(1):320-327. doi: 10.1016/j.jhazmat.2010.11.006
|
15 |
SADRI MOGHADDAM S, ALAVI MOGHADDAM M R. Cultivation of aerobic granules under different pre-anaerobic reaction times in sequencing batch reactors[J]. Separation and Purification Technology, 2015, 142:149-154. doi: 10.1016/j.seppur.2014.12.046
|
16 |
|
|
LI Zhihua, ZHANG Ting, WU Jie,et al. Effects of heterotrophic and autotrophic bacteria on the stability of aerobic granular sludge[J]. Journal of Civil,Architectural & Environmental Engineering, 2010, 32(5):76-81. doi: 10.3969/j.issn.1674-4764.2010.05.013
|
17 |
DE KREUK M K, KISHIDA N, VAN LOOSDRECHT M C M. Aerobic granular sludge:State of the art[J]. Water Science and Technology, 2007, 55(8/9):75-81. doi: 10.2166/wst.2007.244
|
18 |
DE BRUIN L M M, DE KREUK M D, VAN DER ROEST H F,et al. Aerobic granular sludge technology:An alternative to activated sludge?[J]. Water Science and Technology, 2004, 49(11/12):1-7. doi: 10.2166/wst.2004.0790
|
19 |
李志华,付进芳,李胜,等. 好氧颗粒污泥处理综合城市污水的中试研究[J]. 中国给水排水,2011,27(15):4-8.
|
|
LI Zhihua, FU Jinfang, LI Sheng,et al. Pilot study on aerobic granular sludge for treating comprehensive municipal wastewater[J]. China Water & Wastewater,2011,27(15):4-8.
|
20 |
LI Jun, DING Libin, CAI Ang,et al. Aerobic sludge granulation in a full-scale sequencing batch reactor[J]. BioMed Research International, 2014, 2014:268789. doi: 10.1155/2014/268789
|
21 |
SEPÚLVEDA-MARDONES M, CAMPOS J L, MAGRÍ A,et al. Moving forward in the use of aerobic granular sludge for municipal wastewater treatment:An overview[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(4):741-769. doi: 10.1007/s11157-019-09518-9
|
22 |
O’CALLAGHAN P, ADAPA L M, BUISMAN C. Analysis of adoption rates for needs driven versus value driven innovation water technologies[J]. Water Environment Research, 2019, 91(2):144-156. doi: 10.1002/wer.1013
|
23 |
WINKLER M K H, VAN LOOSDRECHT M C M. Intensifying existing urban wastewater[J]. Science, 2022, 375(6579):377-378. doi: 10.1126/science.abm3900
|
24 |
DE SANCTIS M, ALTIERI V G, PIERGROSSI V,et al. Aerobic granular-based technology for water and energy recovery from municipal wastewater[J]. New Biotechnology, 2020, 56:71-78. doi: 10.1016/j.nbt.2019.12.002
|
25 |
HAMZA R, RABII A, EZZAHRAOUI F Z,et al. A review of the state of development of aerobic granular sludge technology over the last 20 years:Full-scale applications and resource recovery[J]. Case Studies in Chemical and Environmental Engineering, 2022, 5:100173. doi: 10.1016/j.cscee.2021.100173
|
26 |
ROGERS E M. Diffusion of innovations[M]. 5th edition. New York:Free Press,2003:3-17.
|
27 |
PARKER D S. Introduction of new process technology into the wastewater treatment sector[J]. Water Environment Research, 2011, 83(6):483-497. doi: 10.2175/106143009x12465435983015
|
28 |
European Patent Office. The patents of aerobic granular sludge[EB/OL].(2018-06-28)[2022-09-03].
|
29 |
PAUL O, MANJOOSHA A L, CEES B. Assessing and anticipating the real world impact of innovative water technologies[J]. Journal of Cleaner Production, 2021, 315:128056. doi: 10.1016/j.jclepro.2021.128056
|
30 |
HAO Xiaodi, LI Ji, VAN LOOSDRECHT M C M,et al. Energy recovery from wastewater:Heat over organics[J]. Water Research, 2019, 161:74-77. doi: 10.1016/j.watres.2019.05.106
|
31 |
KIM N K, MAO Ningtao, LIN R,et al. Flame retardant property of flax fabrics coated by extracellular polymeric substances recovered from both activated sludge and aerobic granular sludge[J]. Water Research, 2020, 170:115344. doi: 10.1016/j.watres.2019.115344
|
32 |
PIERGROSSI V, DE SANCTIS M, CHIMIENTI S,et al. Energy recovery capacity evaluation within innovative biological wastewater treatment process[J]. Energy Conversion and Management, 2018, 172:529-539. doi: 10.1016/j.enconman.2018.07.013
|
33 |
ARTHUR W B. The nature of technology:What it is and how it evolves[M]. New York:Free Press,2009:1032-1033.
|
34 |
MIAO Sheng, ZHOU Changliang, ALQAHTANI S ALI,et al. Applying machine learning in intelligent sewage treatment:A case study of chemical plant in sustainable cities[J]. Sustainable Cities and Society, 2021, 72:103009. doi: 10.1016/j.scs.2021.103009
|
35 |
VAN LOOSDRECHT M C M, BRDJANOVIC D. Anticipating the next century of wastewater treatment[J]. Science, 2014, 344(6191):1452-1453. doi: 10.1126/science.1255183
|
36 |
李志华,孙垂猛,柴波. 不同类型活性污泥内源呼吸过程的典型特征解析[J]. 中国给水排水,2015,31(7):25-28.
|
|
LI Zhihua, SUN Chuimeng, CHAI Bo. Typical features of endogenous respiration process of different types of activated sludge[J]. China Water & Wastewater,2015,31(7):25-28.
|