1 |
IZADI P, SINHA P, ANDALIB M,et al. Coupling fundamental mechanisms and operational controls in mainstream partial denitrification for partial denitrification anammox applications:A review[J]. Journal of Cleaner Production, 2023, 400:136741. doi: 10.1016/j.jclepro.2023.136741
|
2 |
DENG Yangfan, EKAMA G A, CUI Yanxiang,et al. Coupling of sulfur(thiosulfate)-driven denitratation and anammox process to treat nitrate and ammonium contained wastewater[J]. Water Research, 2019, 163:114854. doi: 10.1016/j.watres.2019.114854
|
3 |
YANG Weiming, LU Hui, KHANAL S K,et al. Granulation of sulfur-oxidizing bacteria for autotrophic denitrification[J]. Water Research, 2016, 104:507-519. doi: 10.1016/j.watres.2016.08.049
|
4 |
周健,黄勇,刘忻,等. 硫自养反硝化耦合厌氧氨氧化脱氮条件控制研究[J]. 环境科学,2016,37(3):1061-1069.
|
|
ZHOU Jian, HUANG Yong, LIU Xin,et al. Element sulfur autotrophic denitrification combined anaerobic ammonia oxidation[J]. Environmental Science,2016,37(3):1061-1069.
|
5 |
CARDOSO R B, SIERRA-ALVAREZ R, ROWLETTE P,et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions[J]. Biotechnology and Bioengineering, 2006, 95(6):1148-1157. doi: 10.1002/bit.21084
|
6 |
MORA M, GUISASOLA A, GAMISANS X,et al. Examining thiosulfate-driven autotrophic denitrification through respirometry[J]. Chemosphere, 2014, 113:1-8. doi: 10.1016/j.chemosphere.2014.03.083
|
7 |
HUANG Shuo, YU Deshuang, CHEN Guanghui,et al. Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process:Simultaneous nitrate and sulfur removal[J]. Chemosphere, 2021, 278:130413. doi: 10.1016/j.chemosphere.2021.130413
|
8 |
YUAN Zhongling, CHEN Yongzhi, ZHANG Ming,et al. Efficient nitrite accumulation and elemental sulfur recovery in partial sulfide autotrophic denitrification system:Insights of seeding sludge,S/N ratio and flocculation strategy[J]. Chemosphere, 2022, 288:132388. doi: 10.1016/j.chemosphere.2021.132388
|
9 |
MORAES B S, SOUZA T S O, FORESTI E. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors[J]. Process Biochemistry, 2012, 47(9):1395-1401. doi: 10.1016/j.procbio.2012.05.008
|
10 |
POLIZZI C, GABRIEL D, MUNZ G. Successful sulphide-driven partial denitrification:Efficiency,stability and resilience in SRT-controlled conditions[J]. Chemosphere, 2022, 295:133936. doi: 10.1016/j.chemosphere.2022.133936
|
11 |
ANDREIDES D, VARGA Z, POKORNA D,et al. Performance evaluation of sulfide-based autotrophic denitrification for petrochemical industry wastewater[J]. Journal of Water Process Engineering, 2021, 40:101834. doi: 10.1016/j.jwpe.2020.101834
|
12 |
|
|
YANG Jun, ZHANG Hanshu, LI Peng,et al. Selection and research status of electron donors for autotrophic denitrification using reduced inorganic sulfur compounds[J]. Industrial Water Treatment, 2021, 41(6):134-140. doi: 10.11894/iwt.2020-0591
|
13 |
PAN Jianxin, MA Jingde, WU Haizhen,et al. Simultaneous removal of thiocyanate and nitrogen from wastewater by autotrophic denitritation process[J]. Bioresource Technology, 2018, 267:30-37. doi: 10.1016/j.biortech.2018.07.014
|
14 |
ZHANG Ruochen, XU Xijun, CHEN Chuan,et al. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification[J]. Water Research, 2018, 143:355-366. doi: 10.1016/j.watres.2018.06.053
|
15 |
YAN Jia, WEN Huijun, LI Qingqing,et al. Enhanced elemental sulfur recovery and nitrogen removal through coupling of sulfide-dependent denitrification and anammox processes during ammonium-and sulfide-laden waste stream treatment[J]. International Biodeterioration & Biodegradation, 2020, 155:105086. doi: 10.1016/j.ibiod.2020.105086
|
16 |
CAO Xiwei, ZHOU Xin, XUE Mi,et al. Evaluation of nitrogen removal and N 2O emission in a novel anammox coupled with sulfite-driven autotrophic denitrification system:Influence of pH[J]. Journal of Cleaner Production, 2021, 321:128984. doi: 10.1016/j.jclepro.2021.128984
|
17 |
CHEN Fangmin, LI Xiang, GU Chenwei,et al. Selectivity control of nitrite and nitrate with the reaction of S 0 and achieved nitrite accumulation in the sulfur autotrophic denitrification process[J]. Bioresource Technology, 2018, 266:211-219. doi: 10.1016/j.biortech.2018.06.062
|
18 |
SHEN Ziqi, XIE Linyan, Chen LÜ,et al. Effects of salinity on nitrite and elemental sulfur accumulation in a double short-cut sulfur autotrophic denitrification process[J]. Bioresource Technology, 2023, 369:128432. doi: 10.1016/j.biortech.2022.128432
|
19 |
POLIZZI C, GABRIEL D, MUNZ G. Successful sulphide-driven partial denitrification:Efficiency,stability and resilience in SRT-controlled conditions[J]. Chemosphere, 2022, 295:133936. doi: 10.1016/j.chemosphere.2022.133936
|
20 |
|
|
CHEN Siyu, ZHANG Shaoqing, CHEN Peng,et al. Recent advances in partial denitrification based biological nitrogen removal[J]. Environmental Engineering, 2021, 39(5):38-44. doi: 10.13205/j.hjgc.202105006
|
21 |
SAHINKAYA E, KILIC A, DUYGULU B. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent[J]. Water Research, 2014, 60:210-217. doi: 10.1016/j.watres.2014.04.052
|
22 |
CHUNG J, AMIN K, KIM S,et al. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor[J]. Water Research, 2014, 58:169-178. doi: 10.1016/j.watres.2014.03.071
|
23 |
BAO Hongxu, LI Zhuoran, SONG Zebin,et al. Mitigating nitrite accumulation during S 0-based autotrophic denitrification:Balancing nitrate-nitrite reduction rate with thiosulfate as external electron donor[J]. Environmental Research, 2022, 204:112016. doi: 10.1016/j.envres.2021.112016
|
24 |
CHEN Fangmin, LI Xiang, YUAN Yan,et al. An efficient way to enhance the total nitrogen removal efficiency of the Anammox process by S 0-based short-cut autotrophic denitrification[J]. Journal of Environmental Sciences, 2019, 81:214-224. doi: 10.1016/j.jes.2019.01.010
|
25 |
|
|
NIE Yuting, ZHOU Xin, PING Caixia. Nitrite accumulation characteristics in partial autotrophic denitrification process driven by SO 3 2- [J]. China Environmental Science, 2023, 43(11):5719-5727. doi: 10.3969/j.issn.1000-6923.2023.11.010
|
26 |
ZHOU Yin, CHEN Fangxin, CHEN Nan,et al. Denitrification performance and mechanism of biofilter constructed with sulfur autotrophic denitrification composite filler in engineering application[J]. Bioresource Technology, 2021, 340:125699. doi: 10.1016/j.biortech.2021.125699
|
27 |
KOSTRYTSIA A, PAPIRIO S, FRUNZO L,et al. Elemental sulfur-based autotrophic denitrification and denitritation:Microbially catalyzed sulfur hydrolysis and nitrogen conversions[J]. Journal of Environmental Management, 2018, 211:313-322. doi: 10.1016/j.jenvman.2018.01.064
|
28 |
GE Shijian, PENG Yongzhen, WANG Shuying,et al. Nitrite accumulation under constant temperature in anoxic denitrification process:The effects of carbon sources and COD/NO 3-N[J]. Bioresource Technology, 2012, 114:137-143. doi: 10.1016/j.biortech.2012.03.016
|
29 |
SADEQ M, MOE C L, ATTARASSI B,et al. Drinking water nitrate and prevalence of methemoglobinemia among infants and children aged 1-7 years in Moroccan areas[J]. International Journal of Hygiene and Environmental Health, 2008, 211(5/6):546-554. doi: 10.1016/j.ijheh.2007.09.009
|
30 |
YUAN Yan, LI Xiang, LI Wei,et al. Effects of different reduced sulfur forms as electron donors in the start-up process of short-cut sulfur autotrophic denitrification[J]. Bioresource Technology, 2022, 354:127194. doi: 10.1016/j.biortech.2022.127194
|
31 |
WANG Zhiqi, GAO Jingfeng, DAI Huihui,et al. Partial S 0-driven autotrophic denitrification process facilitated the quick natural enrichment of anammox bacteria at room temperature[J]. Science of the Total Environment, 2023, 855:158916. doi: 10.1016/j.scitotenv.2022.158916
|
32 |
WANG Jiaojiao, XU Lianzengji, HUANG Baocheng,et al. Multiple electron acceptor-mediated sulfur autotrophic denitrification:Nitrogen source competition,long-term performance and microbial community evolution[J]. Bioresource Technology, 2021, 329:124918. doi: 10.1016/j.biortech.2021.124918
|
33 |
QIAN Jin, BAI Linqin, ZHANG Mingkuan,et al. Achieving rapid thiosulfate-driven denitrification(TDD) in a granular sludge system[J]. Water Research, 2021, 190:116716. doi: 10.1016/j.watres.2020.116716
|
34 |
DI CAPUA F, PAPIRIO S, LENS P N L,et al. Chemolithotrophic denitrification in biofilm reactors[J]. Chemical Engineering Journal, 2015, 280:643-657. doi: 10.1016/j.cej.2015.05.131
|
35 |
SABBA F, DEVRIES A, VERA M,et al. Potential use of sulfite as a supplemental electron donor for wastewater denitrification[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15(4):563-572. doi: 10.1007/s11157-016-9413-y
|
36 |
XUE Mi, NIE Yuting, CAO Xiwei,et al. Deciphering the influence of S/N ratio in a sulfite-driven autotrophic denitrification reactor[J]. Science of the Total Environment, 2022, 836:155612. doi: 10.1016/j.scitotenv.2022.155612
|
37 |
LIU Chunshuang, ZHAO Dongfeng, YAN Laihong,et al. Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria[J]. Bioresource Technology, 2015, 191:332-336. doi: 10.1016/j.biortech.2015.05.027
|
38 |
LIU Chunshuang, LI Wenfei, LI Xuechen,et al. Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor[J]. Bioresource Technology, 2017, 243:1237-1240. doi: 10.1016/j.biortech.2017.07.030
|
39 |
|
|
CAI Jing, ZHENG Ping, HU Baolan,et al. Influence of pH and alkalinity on process performance of simultaneous anaerobic sulfide and nitrate removal[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(5):1264-1270. doi: 10.3321/j.issn:0438-1157.2008.05.030
|
40 |
GLASS C, SILVERSTEIN J. Denitrification kinetics of high nitrate concentration water:pH effect on inhibition and nitrite accumulation[J]. Water Research, 1998, 32(3):831-839. doi: 10.1016/s0043-1354(97)00260-1
|
41 |
LI Xiang, YUAN Yan, DANG Pengze,et al. Effect of salinity stress on nitrogen and sulfur removal performance of short-cut sulfur autotrophic denitrification and anammox coupling system[J]. Science of the Total Environment, 2023, 878:162982. doi: 10.1016/j.scitotenv.2023.162982
|
42 |
JING Cai, PING Zheng, MAHMOOD Q. Influence of various nitrogenous electron acceptors on the anaerobic sulfide oxidation[J]. Bioresource Technology, 2010, 101(9):2931-2937. doi: 10.1016/j.biortech.2009.11.047
|
43 |
SAHINKAYA E, DURSUN N. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment:Elimination of excess sulfate production and alkalinity requirement[J]. Chemosphere, 2012, 89(2):144-149. doi: 10.1016/j.chemosphere.2012.05.029
|
44 |
MA Jiaoyue, LIU Hong, DANG Hongzhong,et al. Realization of nitrite accumulation in an autotrophic‐heterotrophic denitrification system using different S/N/C ratios coupled with ANAMMOX to achieve nitrogen removal[J]. Journal of Chemical Technology & Biotechnology, 2023, 98(1):269-281. doi: 10.1002/jctb.7244
|
45 |
YÁNEZ D, GUERRERO L, BORJA R,et al. Sulfur-based mixotrophic denitrification with the stoichiometric S 0/N ratio and methanol supplementation:Effect of the C/N ratio on the process[J]. Journal of Environmental Science and Health,Part A, 2021, 56(13):1420-1427. doi: 10.1080/10934529.2021.2004839
|
46 |
LI Shengjie, JIANG Zhuo, JI Guodong. Effect of sulfur sources on the competition between denitrification and DNRA[J]. Environmental Pollution, 2022, 305:119322. doi: 10.1016/j.envpol.2022.119322
|
47 |
LIU Yiwen, PENG Lai, NGO H H,et al. Evaluation of nitrous oxide emission from sulfide-and sulfur-based autotrophic denitrification processes[J]. Environmental Science & Technology, 2016, 50(17):9407-9415. doi: 10.1021/acs.est.6b02202
|
48 |
杨世东,刘涵. 硫自养反硝化中亚硝酸盐积累的研究现状与展望[J]. 东北电力大学学报,2020,40(1):56-64.
|
|
YANG Shidong, LIU Han. Research on nitrite accumulation in sulfur autotrophic denitrification[J]. Journal of Northeast Electric Power University,2020,40(1):56-64.
|
49 |
MIAO Zhijia, ZENG Wei, WANG Shuying,et al. Effect of temperature on anoxic metabolism of nitrites to nitrous oxide by polyphosphate accumulating organisms[J]. Journal of Environmental Sciences, 2014, 26(2):264-273. doi: 10.1016/s1001-0742(13)60406-4
|
50 |
KAPPLER U, DAHL C. Enzymology and molecular biology of prokaryotic sulfite oxidation[J]. FEMS Microbiology Letters, 2001, 203(1):1-9. doi: 10.1111/j.1574-6968.2001.tb10813.x
|