| [1] |
BORETTI A, ROSA L. Reassessing the projections of the world water development report[J]. NPJ Clean Water, 2019, 2:15. doi: 10.1038/s41545-019-0039-9
|
| [2] |
邢思阳,于飞,马杰. 电容去离子过渡金属基电极设计及应用研究进展[J]. 应用化学,2023,40(9):1215-1232.
|
|
XING Siyang, YU Fei, MA Jie. Research progress in design and application of transition metal electrode for capacitive deionization[J]. Chinese Journal of Applied Chemistry,2023,40(9):1215-1232.
|
| [3] |
ZHOU Peilei, ZHU Quanji, SUN Xiaoxia,et al. Recent advances in MXene-based membrane for solar-driven interfacial evaporation desalination[J]. Chemical Engineering Journal, 2023, 464:142508. doi: 10.1016/j.cej.2023.142508
|
| [4] |
严硕,南军,李晓云,等. MXenes基纳米材料在水处理脱盐领域研究进展[J]. 工业水处理,2024,44(5):64-70.
|
|
YAN Shuo, Jun NAN, LI Xiaoyun,et al. Recent advances in MXene-based nanomaterials in water desalination field[J]. Industrial Water Treatment,2024,44(5):64-70.
|
| [5] |
PORADA S, ZHAO R, VAN DER WAL A,et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8):1388-1442. doi: 10.1016/j.pmatsci.2013.03.005
|
| [6] |
尹广军,陈福明. 电容去离子研究进展[J]. 水处理技术,2003,29(2):63-66.
|
|
YIN Guangjun, CHEN Fuming. Progress in capacitive deionization[J]. Technology of Water Treatment,2003,29(2):63-66.
|
| [7] |
刘转年,魏本龙,张培平,等. 电容去离子碳基电极材料的研究进展[J]. 材料科学与工程学报,2024,42(2):320-330.
|
|
LIU Zhuannian, WEI Benlong, ZHANG Peiping,et al. Research progress of carbon-based electrode materials for capacitive deionization[J]. Journal of Materials Science and Engineering,2024,42(2):320-330.
|
| [8] |
房金峰,刘洋,滕新君,等. 混合电容去离子技术及法拉第电极材料研究进展[J]. 应用化工,2024,53(7):1692-1696.
|
|
FANG Jinfeng, LIU Yang, TENG Xinjun,et al. Research progress on hybrid capacitive deionization and faradic electrode materials[J]. Applied Chemical Industry,2024,53(7):1692-1696.
|
| [9] |
LI Qian, ZHENG Yun, XIAO Dengji,et al. Faradaic electrodes open a new era for capacitive deionization[J]. Advanced Science, 2020, 7(22):2002213. doi: 10.1002/advs.202002213
|
| [10] |
赖倩,周田恬,王长彬,等. 二维纳米材料在电容去离子中的研究进展[J]. 化工新型材料,2024,52(10):23-26.
|
|
LAI Qian, ZHOU Tiantian, WANG Changbin,et al. Research progress on two-dimensional nanomaterials for capacitive deionization[J]. New Chemical Materials,2024,52(10):23-26.
|
| [11] |
孙怡然. 法拉第电容去离子电极的设计及其脱盐和抗性基因去除效能研究[D]. 上海:同济大学,2022.
|
|
SUN Yiran. Design of novel Faradaic electrode and its application in capacitive desalination and antibiotic resistant genes removal[D]. Shanghai:Tongji University,2022.
|
| [12] |
KONG Hui, YANG Meng, MIAO Yingchun,et al. Polypyrrole as a novel chloride-storage electrode for seawater desalination[J]. Energy Technology, 2019, 7(11):1900835. doi: 10.1002/ente.201900835
|
| [13] |
齐元帅,彭文朝,李阳,等. 电化学脱盐机理及相关研究进展[J]. 化工学报,2024,75(1):171-189.
|
|
QI Yuanshuai, PENG Wenchao, LI Yang,et al. Research progress on electrochemical desalination mechanisms and related studies[J]. CIESC Journal,2024,75(1):171-189.
|
| [14] |
ZHAO Xiaoyu, WEI Hongxin, ZHAO Huachao,et al. Electrode materials for capacitive deionization:A review[J]. Journal of Electroanalytical Chemistry, 2020, 873:114416. doi: 10.1016/j.jelechem.2020.114416
|
| [15] |
ZHANG Yuan, SRIMUK P, ASLAN M,et al. Polymer ion-exchange membranes for capacitive deionization of aqueous media with low and high salt concentration[J]. Desalination, 2020, 479:114331. doi: 10.1016/j.desal.2020.114331
|
| [16] |
NAGUIB M, KURTOGLU M, PRESSER V,et al. Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2 [J]. Advanced Materials, 2011, 23(37):4248-4253. doi: 10.1002/adma.201102306
|
| [17] |
DOWNES M, SHUCK C E, MCBRIDE B,et al. Comprehensive synthesis of Ti 3C 2T x from MAX phase to MXene[J]. Nature Protocols, 2024, 19(6):1807-1834. doi: 10.1038/s41596-024-00969-1
|
| [18] |
Jianxiao NAN, GUO Xin, XIAO Jun,et al. Nanoengineering of 2D MXene-based materials for energy storage applications[J]. Small, 2021, 17(9):1902085. doi: 10.1002/smll.201902085
|
| [19] |
LUKATSKAYA M R, KOTA S, LIN Zifeng,et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2:17105. doi: 10.1038/nenergy.2017.105
|
| [20] |
TAN Zhiyou, WANG Wang, ZHU Mengke,et al. Ti 3C 2T x MXene@carbon dots hybrid microflowers as a binder-free electrode material toward high capacity capacitive deionization[J]. Desalination, 2023, 548:116267. doi: 10.1016/j.desal.2022.116267
|
| [21] |
GUO Kaiwen, ZHANG Le, HUANG Shunjiang,et al. Three-dimensional coated CuNiFe-Prussian blue analogue@MXene heterostructure for capacitive deionization to slow down the damage of MXene by dissolved oxygen[J]. Journal of Colloid and Interface Science, 2025, 682:135-147. doi: 10.1016/j.jcis.2024.11.200
|
| [22] |
OSTI N C, NAGUIB M, GANESHAN K,et al. Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers[J]. Physical Review Materials, 2017, 1(6):065406. doi: 10.1103/physrevmaterials.1.065406
|
| [23] |
NAGUIB M, UNOCIC R R, ARMSTRONG B L,et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”[J]. Dalton Transactions, 2015, 44(20):9353-9358. doi: 10.1039/c5dt01247c
|
| [24] |
FENG Aihu, YU Yang, MI Le,et al. Comparative study on electrosorptive behavior of NH 4HF 2-etched Ti 3C 2 and HF-etched Ti 3C 2 for capacitive deionization[J]. Ionics, 2019, 25(2):727-735. doi: 10.1007/s11581-018-2787-9
|
| [25] |
BAO Weizhai, TANG Xiao, GUO Xin,et al. Porous cryo-dried MXene for efficient capacitive deionization[J]. Joule, 2018, 2(4):778-787. doi: 10.1016/j.joule.2018.02.018
|
| [26] |
MA Jie, CHENG Yujuan, WANG Lei,et al. Free-standing Ti 3C 2T x MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity[J]. Chemical Engineering Journal, 2020, 384:123329. doi: 10.1016/j.cej.2019.123329
|
| [27] |
GUO Lu, WANG Xianfen, LEONG Z Y,et al. Ar plasma modification of 2D MXene Ti 3C 2T x nanosheets for efficient capacitive desalination[J]. FlatChem, 2018, 8:17-24. doi: 10.1016/j.flatc.2018.01.001
|
| [28] |
ASHEBO M M, LIU Ningning, YU Fei,et al. Surface functional modification of Nb 2CT x MXene for high performance capacitive deionization[J]. Separation and Purification Technology, 2024, 343:127125. doi: 10.1016/j.seppur.2024.127125
|
| [29] |
HUANG Chuhan, HUANG Tianqin, LI XUE liang,et al. A “two-birds-one-stone” strategy to enhance capacitive deionization performance of flexible Ti 3C 2T x MXene film electrodes by surface modification[J]. Journal of Materials Chemistry A, 2024, 12(15):8734-8746. doi: 10.1039/d4ta00236a
|
| [30] |
AMIRI A, CHEN Yijun, TENG C BEE,et al. Porous nitrogen-doped MXene-based electrodes for capacitive deionization[J]. Energy Storage Materials, 2020, 25:731-739. doi: 10.1016/j.ensm.2019.09.013
|
| [31] |
XU Huiting, LIU Huibin, GUO Peng,et al. Multifunctional capacitive deionization removal of metal ions via crumpled phosphorus-doped Ti 3C 2T x MXene nanosheets[J]. Desalination, 2024, 586:117861. doi: 10.1016/j.desal.2024.117861
|
| [32] |
GONG Siqi, LI Jing, ZHAO Fan,et al. Porous N,P co-doping Ti 3C 2T x MXene for high-performance capacitive deionization[J]. FlatChem, 2024, 48:100772. doi: 10.1016/j.flatc.2024.100772
|
| [33] |
DING Zibiao, XU Xingtao, LI Jiabao,et al. Nanoarchitectonics from 2D to 3D:MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization[J]. Chemical Engineering Journal, 2022, 430:133161. doi: 10.1016/j.cej.2021.133161
|
| [34] |
LIU Zhenglong, WANG Yue, ZHOU Yingqiao,et al. Confined interfacial self-assembly of graphene-like carbon/MXene composite electrodes for capacitive deionization[J]. Chemical Engineering Journal, 2024, 498:155717. doi: 10.1016/j.cej.2024.155717
|
| [35] |
ZHANG Le, CAI Yanmeng, FANG Rongli,et al. Construction of fully coated polypyrrole oxygen-barrier film based on MXene nanosheets for high reliability capacitive deionization[J]. Separation and Purification Technology, 2024, 337:126362. doi: 10.1016/j.seppur.2024.126362
|
| [36] |
LIANG Mingxing, WANG Lei, PRESSER V,et al. Combining battery-type and pseudocapacitive charge storage in Ag/Ti 3C 2T x MXene electrode for capturing chloride ions with high capacitance and fast ion transport[J]. Advanced Science, 2020, 7(18):2000621. doi: 10.1002/advs.202000621
|
| [37] |
GONG Siqi, LIU Huibin, ZHAO Fan,et al. Vertically aligned bismuthene nanosheets on MXene for high-performance capacitive deionization[J]. ACS Nano, 2023, 17(5):4843-4853. doi: 10.1021/acsnano.2c11430
|
| [38] |
TANG Yijian, ZHENG Shasha, XU Yuxia,et al. Advanced batteries based on manganese dioxide and its composites[J]. Energy Storage Materials, 2018, 12:284-309. doi: 10.1016/j.ensm.2018.02.010
|
| [39] |
LEONG Z Y, YANG Huiying. A study of MnO 2 with different crystalline forms for pseudocapacitive desalination[J]. ACS Applied Materials & Interfaces, 2019, 11(14):13176-13184. doi: 10.1021/acsami.8b20880
|
| [40] |
JIN Jie, LI Man, TANG Mengting,et al. Phase- and crystallinity-tailorable MnO 2 as an electrode for highly efficient hybrid capacitive deionization(HCDI)[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(30):11424-11434. doi: 10.1021/acssuschemeng.0c04101
|
| [41] |
ZHAO Yanshuang, ZHANG Le, HUANG Shunjiang,et al. Oxygen vacancy enhancing intrinsic conductivity of rGO@MnO 2 -x electrode for efficient hybrid capacitive deionization[J]. Journal of Environmental Chemical Engineering, 2024, 12(1):111883. doi: 10.1016/j.jece.2024.111883
|
| [42] |
NGUYEN H A, LE T T L, TO M D,et al. Preparation of layered structure MnO 2/CNTs composites for high-performance salt removal by hybrid capacitive deionization[J]. Journal of Solid State Electrochemistry, 2024, 28(10):3961-3972. doi: 10.1007/s10008-024-05998-0
|
| [43] |
ZHANG Boshuang, LI Jingjing, HU Bin,et al. Flexible δ-MnO 2 nanosheet-infixed porous carbon nanofibers for capacitive deionization[J]. Electrochimica Acta, 2023, 443:141929. doi: 10.1016/j.electacta.2023.141929
|
| [44] |
BABURAJ A, PUTHIRATH A B, JAIN A,et al. Multilayer graphene coated vanadium(V) oxide as electrodes for intercalation based brackish water desalination[J]. 2D Materials, 2020, 7(4):045025. doi: 10.1088/2053-1583/aba5c9
|
| [45] |
ZHANG Zehao, WANG Zheng, LI Haibo. Preparation of 2D V 2O 3@Pourous carbon nanosheets derived from V 2CF x MXene for capacitive desalination[J]. Acta Physico-Chimica Sinica, 2024, 40(8):2308020. doi: 10.3866/pku.whxb202308020
|
| [46] |
LI Chengxu, WANG Shiyong, WANG Gang,et al. NH 4V 4O 10/rGO Composite as a high-performance electrode material for hybrid capacitive deionization[J]. Environmental Science:Water Research & Technology, 2020, 6(2):303-311. doi: 10.1039/c9ew00499h
|
| [47] |
SALHI B, BAIG N, ABDULAZEEZ I. Air-gap-assisted solvothermal process to synthesize unprecedented graphene-like two-dimensional TiO 2 nanosheets for Na + electrosorption/desalination[J]. NPJ Clean Water, 2024, 7:9. doi: 10.1038/s41545-024-00304-x
|
| [48] |
LI Ruige, SONG Jingke, ZHI Songsong,et al. Laser-induced 3D porous flower-like Fe 2O 3/reduced graphene oxide modified nickel foam electrode for enhanced capacitive deionization[J]. Desalination, 2023, 548:116286. doi: 10.1016/j.desal.2022.116286
|
| [49] |
ZHOU Ruijuan, GUO Xiaoxu, LI Xiaoman,et al. An insight into the promotion effect of Na +/vacancy ordering on desalination performance of Na x CoO 2 [J]. Desalination, 2020, 478:114301. doi: 10.1016/j.desal.2019.114301
|
| [50] |
QIAO Yixuan, LI Yuqi, WANG Yang,et al. Layered double hydroxide for electrochemical ion separation[J]. Desalination, 2025, 596:118353. doi: 10.1016/j.desal.2024.118353
|
| [51] |
MALAKOOTIAN M, SHAHAMAT Y D, KANNAN K,et al. Degradation of p-nitroaniline from aqueous solutions using ozonation/Mg-Al layered double hydroxides integrated with the sequencing batch moving bed biofilm reactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113,241-252. doi: 10.1016/j.jtice.2020.08.019
|
| [52] |
江晓. 层状双金属氢氧化物/氧化物脱除废水中氯离子的研究[D]. 合肥:合肥工业大学,2020.
|
|
JIANG Xiao. Study on the removal of chloridion in the waste water using layered double hydroxides and oxides[D]. Hefei:Hefei University of Technology,2020.
|
| [53] |
WANG Kai, LIU Yong, DING Zibiao,et al. Chloride pre-intercalated CoFe-layered double hydroxide as chloride ion capturing electrode for capacitive deionization[J]. Chemical Engineering Journal, 2022, 433:133578. doi: 10.1016/j.cej.2021.133578
|
| [54] |
FU Chen, ZHU Zhaoyuan, MA Xiang,et al. Enhanced capacitive deionization performance with self-supporting electrodes of flexible carbon nanofiber/layered double hydroxide composites[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 703:135251. doi: 10.1016/j.colsurfa.2024.135251
|
| [55] |
HUANG Shunjiang, WANG Yue, ZHANG Le,et al. Template-directed strategy synthesis of CoNi-layered double hydroxide nanosheet coated with polypyrrole for enhanced capacitive deionization[J]. Chemical Engineering Journal, 2024, 500:157137. doi: 10.1016/j.cej.2024.157137
|
| [56] |
ZHANG Le, WANG Yue, CAI Yanmeng,et al. Heterostructure of NiCoAl-layered double hydroxide nanosheet arrays assembled on MXene coupled with CNT as conductive bridge for enhanced capacitive deionization[J]. Chemical Engineering Journal, 2023, 478:147270. doi: 10.1016/j.cej.2023.147270
|
| [57] |
LIU Yanzhen, YANG Zhanhong, XIE Xiaoe,et al. Layered double oxides nano-flakes derived from layered double hydroxides:Preparation,properties and application in zinc/nickel secondary batteries[J]. Electrochimica Acta, 2015, 185:190-197. doi: 10.1016/j.electacta.2015.10.098
|
| [58] |
GUO Yanwei, ZHU Zhiliang, QIU Yanling,et al. Enhanced adsorption of acid brown 14 dye on calcined Mg/Fe layered double hydroxide with memory effect[J]. Chemical Engineering Journal, 2013, 219:69-77. doi: 10.1016/j.cej.2012.12.084
|
| [59] |
MA Hanyu, WANG Haitao, WU Tong,et al. Highly active layered double hydroxide-derived cobalt nano-catalysts for p-nitrophenol reduction[J]. Applied Catalysis B:Environmental, 2016, 180:471-479. doi: 10.1016/j.apcatb.2015.06.052
|
| [60] |
XI Wen, LI Haibo. The pseudo-capacitive deionization behaviour of CuAl-mixed metal oxides[J]. Environmental Science:Water Research & Technology,2020,6(2):296-302.
|
| [61] |
XI Wen, LI Haibo. Vertically-aligned growth of CuAl-layered double oxides on reduced graphene oxide for hybrid capacitive deionization with superior performance[J]. Environmental Science:Nano, 2020, 7(3):764-772. doi: 10.1039/c9en01238a
|
| [62] |
HU Chengzhi, WANG Ting, DONG Jingjing,et al. Capacitive deionization from reconstruction of NiCoAl-mixed metal oxide film electrode based on the “memory effect”[J]. Applied Surface Science, 2018, 459:767-773. doi: 10.1016/j.apsusc.2018.08.055
|
| [63] |
WANG Yang, PAN Qianfeng, QIAO Yixuan,et al. Layered metal oxide nanosheets with enhanced interlayer space for electrochemical deionization[J]. Advanced Materials,2023,35(15):2210871.
|
| [64] |
庞冰雪. 金属相二硫化钼基脱盐电极材料的制备及其电容去离子性能研究[D]. 长春:吉林大学,2024.
|
|
PANG Bingxue. Preparation and capacitive deionization performance of metallic-phase molybdenum disulfide-based desalination electrode materials[J]. Changchun:Jilin University,2024.
|
| [65] |
郭其景,詹伟泉,王清淼,等. 二硫化钼作为海水淡化材料的研究进展[J]. 化工进展,2021,40(3):1456-1468.
|
|
GUO Qijing, ZHAN Weiquan, WANG Qingmiao,et al. Research progress of molybdenum disulfide as a material for seawater desalination[J]. Chemical Industry and Engineering Progress,2021,40(3):1456-1468.
|
| [66] |
XING Fei, LI Tao, LI Junye,et al. Chemically exfoliated MoS 2 for capacitive deionization of saline water[J]. Nano Energy, 2017, 31:590-595. doi: 10.1016/j.nanoen.2016.12.012
|
| [67] |
MARINOV A D, PRIEGUE L B, SHAH A R,et al. Ex situ characterization of 1T/2H MoS2 and their carbon composites for energy applications,a review[J]. ACS Nano,2023,17(6): 5163-5186.
|
| [68] |
HAO Zhengle, CAI Yanmeng, WANG Yue,et al. A coupling technology of capacitive deionization and MoS 2/nitrogen-doped carbon spheres with abundant active sites for efficiently and selectively adsorbing low-concentration copper ions[J]. Journal of Colloid and Interface Science, 2020, 564:428-441. doi: 10.1016/j.jcis.2019.12.063
|
| [69] |
PENG Weijun, WANG Wei, QI Mengyao,et al. Enhanced capacitive deionization of defect-containing MoS 2/graphene composites through introducing appropriate MoS 2 defect[J]. Electrochimica Acta, 2021, 383:138363. doi: 10.1016/j.electacta.2021.138363
|
| [70] |
SUN Kaige, YAO Xin, YANG Bingqiao,et al. Oxygen-incorporated molybdenum disulfide nanosheets as electrode for enhanced capacitive deionization[J]. Desalination, 2020, 496:114758. doi: 10.1016/j.desal.2020.114758
|
| [71] |
CHEN Zeqiu, XU Xingtao, LIU Yong,et al. Ultra-durable and highly-efficient hybrid capacitive deionization by MXene confined MoS 2 heterostructure[J]. Desalination, 2022, 528:115616. doi: 10.1016/j.desal.2022.115616
|
| [72] |
SRIMUK P, LEE Juhan, TOLOSA A,et al. Titanium disulfide:A promising low-dimensional electrode material for sodium ion intercalation for seawater desalination[J]. Chemistry of Materials, 2017, 29(23):9964-9973. doi: 10.1021/acs.chemmater.7b03363
|
| [73] |
VAFAKHAH S, SAEEDIKHANI M, HUANG Shaozhuan,et al. Tungsten disulfide-reduced GO/CNT aerogel:A tuned interlayer spacing anode for efficient water desalination[J]. Journal of Materials Chemistry A, 2021, 9(17):10758-10768. doi: 10.1039/d1ta01347e
|
| [74] |
DU Jiaxin, XING Wenle, YU Jiaqi,et al. Synergistic effect of intercalation and EDLC electrosorption of 2D/3D interconnected architectures to boost capacitive deionization for water desalination via MoSe 2/mesoporous carbon hollow spheres[J]. Water Research, 2023, 235:119831. doi: 10.1016/j.watres.2023.119831
|