[1] Seeger E M,Maier U,Grathwohl P,et al. Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior,mass removal and depth-dependent contaminant load[J].Water Research,2013,47(2):769-780.
[2] Zhang Yushan,Wang Jing,Qiu Jinquan. Effectiveness of a subsurface constructed wetland on the treatment of saline wastewater[J].Journal of Environmental Science and Engineering,2010,26(4):9-13.
[3] Xu Defu,Li Yingxue,Howard A,et al. Effect of earthworm Eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland[J]. Chemosphere,2013,92(2):201-206.
[4] Maltais-Landry G,Maranger R,Brisson J,et al. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands[J]. Water Research,2009,43(2):535-545.
[5] Lee C G,Fletcher T D,Sun Guangzhi. Nitrogen removal in construct
ed wetland systems[J]. Engineering in Life Sciences,2009,9(1):11-22.
[6] Vymazal J.Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment[J]. Ecological Engineering,2005,25(5):478-490.
[7] 卢少勇,金相灿,余刚. 人工湿地的氮去除机理[J]. 生态学报,2006,26(8):2670-2677.
[8] Sasikala S,Tanaka N,Wah-Wah H S Y,et al. Effects of water levelfluctuation on radial oxygen loss,root porosity,and nitrogen removal in subsurface vertical flow wetland mesocosms[J]. Ecological Engineering,2009,35(3):410-417.
[9] Ding Yi,Song Xinshan,Wang Yuhui,et al. Effects of dissolved oxy-gen and influent COD/N ratios on nitrogen removal in horizontal subsurface flow constructed wetland[J]. Ecological Engineering,2012, 46(1):107-111.
[10] 李志杰,孙井梅,刘宝山.人工湿地脱氮除磷机理及其研究进展[J]. 工业水处理,2012,32(4):1-5.
[11] Dong Huiyu,Qiang Zhimin,Li Tinggang,et al. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water[J]. Journal of Environmental Sciences,2012,24(4):596-601.
[12] 张朝能. 水体中饱和溶解氧的求算方法探讨[J]. 环境科学研究,1999,12(2):54-55.
[13] 鄢璐,王世和,雒维国,等. 运行条件下潜流型人工湿地溶氧状态研究[J]. 环境科学,2006,27(10):2009-2013.
[14] Kuschk P,Wiessner A,Kappelmeyer U,et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate[J]. Water Research,2003, 37(17):4236-4242.
[15] 雒维国,王世和,黄娟,等. 植物光合及蒸腾特性对湿地脱氮效果的影响[J]. 中国环境科学,2006,26(1):30-33.
[16] 赵建刚,刘丽娜,陈章和. 潜流湿地和表面流湿地的净化效果与植物生长比较[J]. 生态科学,2006,25(1):74-77.
[17] 黄娟,王世和,钟秋爽,等. 不同构型湿地氧分布及脱氮效果对比[J]. 土木建筑与环境工程,2009,31(6):117-121.
[18] 丁怡,宋新山,严登华. 补充碳源提取液对人工湿地脱氮作用的影响[J]. 环境科学学报,2012,32(7):1646-1652.
[19] 陈庆昌,冯爱坤,罗建中,等. 人工湿地脱氮技术研究[J]. 工业安全与环保,2008,34(7):17-19.
[20] Tao Wendong,Hall K J,Ramey W. Effects of influent strength onmicroorganisms in surface flow mesocosm wetlands[J]. Water Research,2007,41(19):4557-4565.
[21] 周健,陈飞,张乐,等. 进水方式对序批式人工湿地处理效能的影响[J]. 环境工程学报,2012,6(11):3873-3876.
[22] 王中华,项学敏,周集体. 人工湿地污水处理技术及其在我国中小城镇的应用[J]. 工业水处理,2009,29(12):1-4.
[23] 陈德强,吴振斌,成水平,等. 不同湿地组合工艺净化污水效果的比较[J]. 中国给水排水,2003,19(9):12-15.
[24] 栾晓丽,王晓,赵钰,等. 复合垂直流与潜流人工湿地沿程脱氮除磷对比研究[J]. 环境污染与防治,2009,31(11):26-29.
[25] 楚伟伟,王克科,王岩. 波形潜流人工湿地的应用研究[J]. 水处理技术,2011,37(4):91-94.
[26] 帖靖玺,郑志宏,郑正,等. 三种不同内部结构的潜流式人工湿地特性研究[J]. 工业水处理,2009,29(9):51-53.
[27] 聂志丹,年跃刚,金相灿,等. 间歇式运行对人工湿地处理富营养化湖水的影响[J]. 环境工程学报,2007,1(3):1-4.
[28] 张涛,宋新山. 多点进水潜流湿地的水力效率及氮浓度空间变化[J]. 生态学杂志,2010,29(11):2210-2215.
[29] 李松,王为东,强志民,等. 自动增氧型垂直流人工湿地处理农村生活污水试验研究[J]. 农业环境科学学报,2010,29(8):15661570.
[30] 朱联东,李兆华,熊欣,等. 序批式自动增氧型人工湿地运行效能研究[J]. 污染防治技术,2009,22(6):10-13.
[31] 王霞. 强化潜流人工湿地硝化作用研究[D]. 扬州:扬州大学,2007.
[32] 钟秋爽,王世和,孙晓文,等. 曝气气水比对人工湿地处理效果的影响[J]. 环境工程,2008,26(6):42-44.
[33] 亓鹏玉. 间歇曝气人工水平潜流湿地脱氮除磷效果及氧化亚氮释放研究[D]. 济南:山东大学,2012.
[34] Fan Jinlin,Zhang Bo,Zhang Jian,et al. Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands[J]. Bioresource Technology,2013,141(1):117-122. |