1 |
侯瑞琴, 刘铮, 张统. 航天发射场推进剂环境污染治理技术研究[J]. 导弹与航天运载技术, 2011, (1): 54- 57.
URL
|
2 |
Modell M. Processing methods for the oxidation of organics in supercritical water: US, 4338199[P]. 1982-07-06.
|
3 |
Yi Lei , Guo Liejin , Jin Hui , et al. Gasification of unsymmetrical dimethylhydrazine in supercritical water:Reaction pathway and kinetics[J]. International Journal of Hydrogen Energy, 2018, 43 (18): 8644- 8654.
doi: 10.1016/j.ijhydene.2018.03.092
|
4 |
Segond N , Matsumura Y , Yamamoto K . Determination of ammonia oxidation rate in suband supercritical water[J]. Industrial & Engineering Chemistry Research, 2002, 41 (24): 6020- 6027.
URL
|
5 |
Al-Duri B , Pinto L , Ashraf-Ball N H , et al. Thermal abatement of nitrogen-containing hydrocarbons by non-catalytic supercritical water oxidation(SCWO)[J]. Journal of Materials Science, 2008, 43 (4): 1421- 1428.
doi: 10.1007/s10853-007-2285-3
|
6 |
Loppinet-Serani D A , Aymonier C , Cansell F . Supercritical water for environmental technologies[J]. Journal of Chemical Technology & Biotechnology, 2010, 85 (5): 583- 589.
URL
|
7 |
Koo M , Lee W K , Lee C H . New reactor system for supercritical water oxidation and its application on phenol destruction[J]. Chemical Engineering Science, 1997, 52 (7): 1201- 1214.
doi: 10.1016/S0009-2509(96)00477-0
|
8 |
Liu Xiangwen , Zhou Kebin , Wang Le , et al. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. Journal of the American Chemical Society, 2009, 131 (9): 3140- 3141.
doi: 10.1021/ja808433d
|
9 |
Campbell C T . Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309 (5735): 713- 714.
doi: 10.1126/science.1113955
|
10 |
Sun Congting , Xue Dongfeng . Size-dependent oxygen storage ability of nano-sized ceria[J]. Physical Chemistry Chemical Physics, 2013, 15 (34): 14414.
doi: 10.1039/c3cp51959g
|
11 |
Hosseinpour N , Mortazavi Y , Bahramian A , et al. Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in-situ combustion EOR processes by nanotechnology[J]. Applied Catalysis A General, 2014, 477 (2): 159- 171.
URL
|
12 |
廖晓斌, 郭玉芳, 叶代启. 不同金属氧化物对等离子体降解甲苯的作用研究[J]. 环境科学学报, 2010, 30 (9): 1824- 1832.
URL
|
13 |
Li Lixiong , Chen Peishi , Gloyna E F . Generalized kinetic model for wet oxidation of organic compounds[J]. AIChE Journal, 1991, 37 (11): 1687- 1697.
doi: 10.1002/aic.690371112
|
14 |
Ding Zhongyi , Frisch M A , Li Lixong , et al. Catalytic oxidation in supercritical water[J]. Industrial & Engineering Chemistry Research, 1996, 35 (10): 3257- 3279.
URL
|
15 |
Ding Zhongyi , Li Lixong , Wade D , et al. Supercritical water oxidation of NH3 over a MnO2/CeO2 catalyst[J]. Industrial & Engineering Chemistry Research, 1998, 37 (5): 1707- 1716.
URL
|
16 |
Killilea W R , Swallow K C , Hong G T . The fate of nitrogen in supercritical water oxidation[J]. The Journal of Supercritical Fluids, 1992, 5 (1): 72- 78.
doi: 10.1016/0896-8446(92)90044-K
|
17 |
葛红光.超临界水氧化高浓度含氮有机废水研究[D].西安:西安建筑科技大学, 2004.
URL
|