1 |
ZHU Boyuan, CHENG Hao, MA Jianfeng,et al. Bi 2MoO 6 microspheres for the degradation of orange Ⅱ by heterogeneous activation of persulfate under visible light[J]. Materials Letters, 2020, 261:127099. doi: 10.1016/j.matlet.2019.127099
|
2 |
LIU Desheng, LI Minna, LI Xiaochun,et al. Core-shell Zn/Co MOFs derived Co 3O 4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation[J]. Chemical Engineering Journal, 2020, 387:124008. doi: 10.1016/j.cej.2019.124008
|
3 |
FANG Zhi, HUANG Rongfu, HOW Z T,et al. Molecular transformation of dissolved organic matter in process water from oil and gas operation during UV/H 2O 2,UV/chlorine,and UV/persulfate processes[J]. Science of the Total Environment, 2020, 730:139072. doi: 10.1016/j.scitotenv.2020.139072
|
4 |
CHEN Weiming, ZHANG Aiping, GU Zhepei,et al. Enhanced degradation of refractory organics in concentrated landfill leachate by Fe 0/H 2O 2 coupled with microwave irradiation[J]. Chemical Engineering Journal, 2018, 354:680-691. doi: 10.1016/j.cej.2018.08.012
|
5 |
WANG Jianlong, WANG Shizong. Activation of persulfate(PS) and peroxymonosulfate(PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334:1502-1517. doi: 10.1016/j.cej.2017.11.059
|
6 |
ZHAO Guoqing, ZOU Jiao, CHEN Xiaoqing,et al. Iron-based catalysts for persulfate-based advanced oxidation process:Microstructure,property and tailoring[J]. Chemical Engineering Journal, 2021, 421:127845. doi: 10.1016/j.cej.2020.127845
|
7 |
TIAN Ke, HU Limin, LI Letian,et al. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment[J]. Chinese Chemical Letters, 2022, 33(10):4461-4477. doi: 10.1016/j.cclet.2021.12.042
|
8 |
GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants:Review[J]. Chemical Engineering Journal, 2017, 310:41-62. doi: 10.1016/j.cej.2016.10.064
|
9 |
XIAO Sa, CHENG Min, ZHONG Hua,et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways:A review[J]. Chemical Engineering Journal, 2020, 384:123265. doi: 10.1016/j.cej.2019.123265
|
10 |
|
|
CAI Qiulan, YE Chunlin. Recent research progresses on single atom catalyst[J]. Material Science, 2021(1):48-54. doi: 10.12677/ms.2021.111007
|
11 |
CHEN Fang, JIANG Xunzhu, ZHANG Leilei,et al. Single-atom catalysis:Bridging the homo- and heterogeneous catalysis[J]. Chinese Journal of Catalysis, 2018, 39(5):893-898. doi: 10.1016/s1872-2067(18)63047-5
|
12 |
|
|
YU Qinqin, DAI Youzhi, ZHANG Li,et al. Research progress of non-noble metal single-atom catalysts[J]. Environmental Protection of Chemical Industry, 2022, 42(2):143-147. doi: 10.3969/j.issn.1006-1878.2022.02.003
|
13 |
|
|
CUI Xinjiang, SHI Feng. Selective conversion of CO 2 by single-site catalysts[J]. Acta Physico-Chimica Sinica, 2021, 37(5):56-80. doi: 10.3866/PKU.WHXB202006080
|
14 |
LI Jun, LIU Jimmy, ZHANG Tao. Preface to the special issue of the international symposium on single-atom catalysis(ISSAC-2016)[J]. Chinese Journal of Catalysis, 2017, 38(9):1431. doi: 10.1016/s1872-2067(17)62895-x
|
15 |
JOHNSON G E, PRIEST T, LASKIN J. Charge retention by gold clusters on surfaces prepared using soft landing of mass selected ions[J]. ACS Nano, 2012, 6(1):573-582. doi: 10.1021/nn2039565
|
16 |
QIAO Botao, WANG Aiqin, YANG Xiaofeng,et al. Single-atom catalysis of CO oxidation using Pt1/FeO x [J]. Nature Chemistry, 2011, 3(8):634-641. doi: 10.1038/nchem.1095
|
17 |
SUN Shuhui, ZHANG Gaixia, GAUQUELIN N,et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3:1775. doi: 10.1038/srep01775
|
18 |
MOSES-DEBUSK M, YOON M, ALLARD L F,et al. CO oxidation on supported single Pt atoms:Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al 2O 3(010) surface[J]. Journal of the American Chemical Society, 2013, 135(34):12634-12645. doi: 10.1021/ja401847c
|
19 |
GUO Xiaoguang, FANG Guangzong, LI Gang,et al. Direct,nonoxidative conversion of methane to ethylene,aromatics,and hydrogen[J]. Science, 2014, 344(6184):616-619. doi: 10.1126/science.1253150
|
20 |
LIU Pengxin, ZHAO Yun, QIN Ruixuan,et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016, 352(6287):797-801. doi: 10.1126/science.aaf5251
|
21 |
WEI Shengjie, LI Ang, LIU Jincheng,et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms[J]. Nature Nanotechnology, 2018, 13(9):856-861. doi: 10.1038/s41565-018-0197-9
|
22 |
LIU Pengxin, CHEN Jie, ZHENG Nanfeng. Photochemical route for preparing atomically dispersed Pd 1/TiO 2 catalysts on(001)-exposed anatase nanocrystals and P25[J]. Chinese Journal of Catalysis, 2017, 38(9):1574-1580. doi: 10.1016/s1872-2067(17)62784-0
|
23 |
|
|
WU Wenhao, LEI Wen, WANG Liqiong,et al. Preparation of single atom catalysts[J]. Progress in Chemistry, 2020, 32(1):23-32. doi: 10.7536/PC190704
|
24 |
HUANG Bingkun, WU Zelin, ZHOU Hongyu,et al. Recent advances in single-atom catalysts for advanced oxidation processes in water purification[J]. Journal of Hazardous Materials, 2021, 412:125253. doi: 10.1016/j.jhazmat.2021.125253
|
25 |
WU Xuanhao, KIM J H. Outlook on single atom catalysts for persulfate-based advanced oxidation[J]. ACS ES&T Engineering, 2022, 2(10):1776-1796. doi: 10.1021/acsestengg.2c00187
|
26 |
LI Xuning, HUANG Xiang, XI Shibo,et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39):12469-12475. doi: 10.1021/jacs.8b05992
|
27 |
|
|
DUAN Yi, ZOU Ye, ZHOU Shukui,et al. Progress in the degradation of organic pollutants by H 2O 2/PMS/PDS activated by transition metal single-atom catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(8):4147-4158. doi: 10.16085/j.issn.1000-6613.2021-2140
|
28 |
LI Yang, YANG Ting, QIU Shaohui,et al. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species[J]. Chemical Engineering Journal, 2020, 389:124382. doi: 10.1016/j.cej.2020.124382
|
29 |
ZHAO Gang, LI Wenchao, ZHANG Huayu,et al. Single atom Fe-dispersed graphitic carbon nitride(g-C 3N 4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2022, 430:132937. doi: 10.1016/j.cej.2021.132937
|
30 |
LI Jiaquan, ZHAO Shiyong, ZHANG Lianji,et al. Cobalt single atoms embedded in nitrogen-doped graphene for selective oxidation of benzyl alcohol by activated peroxymonosulfate[J]. Small, 2021, 17(16):e2004579. doi: 10.1002/smll.202004579
|
31 |
QI Yuanfeng, LI Jing, ZHANG Yanqing,et al. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation:Role of single cobalt and electron transfer pathway[J]. Applied Catalysis B:Environmental, 2021, 286:119910. doi: 10.1016/j.apcatb.2021.119910
|
32 |
GUO Zhuang, XIE Yongbing, XIAO Jiadong,et al. Single-atom Mn-N 4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution[J]. Journal of the American Chemical Society, 2019, 141(30):12005-12010. doi: 10.1021/jacs.9b04569
|
33 |
YANG Jingren, ZENG Deqian, ZHANG Qinggang,et al. Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants[J]. Applied Catalysis B:Environmental, 2020, 279:119363. doi: 10.1016/j.apcatb.2020.119363
|
34 |
DING Yaobin, FU Libin, PENG Xueqin,et al. Copper catalysts for radical and nonradical persulfate based advanced oxidation processes:Certainties and uncertainties[J]. Chemical Engineering Journal, 2022, 427:131776. doi: 10.1016/j.cej.2021.131776
|
35 |
CHEN Weirui, LI Xukai, WEI Xipeng,et al. Activation of peroxymonosulfate for degrading ibuprofen via single atom Cu anchored by carbon skeleton and chlorine atom:The radical and non-radical pathways[J]. Science of the Total Environment, 2023, 858:160097. doi: 10.1016/j.scitotenv.2022.160097
|
36 |
LIU Xun, PEI Yan, CAO Mengbo,et al. Highly dispersed copper single-atom catalysts activated peroxymonosulfate for oxytetracycline removal from water:Mechanism and degradation pathway[J]. Chemical Engineering Journal, 2022, 450:138194. doi: 10.1016/j.cej.2022.138194
|
37 |
WANG Yanbin, ZHAO Xu, CAO Di,et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C 3N 4 hybrid[J]. Applied Catalysis B:Environmental, 2017, 211:79-88. doi: 10.1016/j.apcatb.2017.03.079
|
38 |
|
|
PENG Xiaoming, WU Jianqun, DAI Hongling,et al. Activation of peroxymonosulfate by single atom catalysts Ni-N-C for high efficiency degradation of phenol[J]. Chemical Journal of Chinese Universities, 2021, 42(8):2581-2591. doi: 10.7503/cjcu20210009
|
39 |
FENG Yong, LEE Poheng, WU Deli,et al. Surface-bound sulfate radical-dominated degradation of 1,4-dioxane by alumina-supported palladium(Pd/Al 2O 3) catalyzed peroxymonosulfate[J]. Water Research, 2017, 120:12-21. doi: 10.1016/j.watres.2017.04.070
|
40 |
XU Haodan, JIANG Ning, WANG Da,et al. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways[J]. Applied Catalysis B:Environmental, 2020, 263:118350. doi: 10.1016/j.apcatb.2019.118350
|
41 |
LI Hongchao, SHAN Chao, PAN Bingcai. Fe(Ⅲ)-doped g-C 3N 4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species[J]. Environmental Science & Technology, 2018, 52(4):2197-2205. doi: 10.1021/acs.est.7b05563
|
42 |
黄智辉,纪志永,陈希,等. 过硫酸盐高级氧化降解水体中有机污染物研究进展[J]. 化工进展,2019,38(5):2461-2470.
|
|
HUANG Zhihui, JI Zhiyong, CHEN Xi,et al. Degradation of organic pollutants in water by persulfate advanced oxidation[J]. Chemical Industry and Engineering Progress,2019,38(5):2461-2470.
|
43 |
WACŁAWEK S, LUTZE H V, GRÜBEL K,et al. Chemistry of persulfates in water and wastewater treatment:A review[J]. Chemical Engineering Journal, 2017, 330:44-62. doi: 10.1016/j.cej.2017.07.132
|
44 |
LIAN Lushi, YAO Bo, HOU Shaodong,et al. Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents[J]. Environmental Science & Technology, 2017, 51(5):2954-2962. doi: 10.1021/acs.est.6b05536
|
45 |
LI Donghao, ZHANG Shixuan, LI Shengnan,et al. Mechanism of the application of single-atom catalyst-activated PMS/PDS to the degradation of organic pollutants in water environment:A review[J]. Journal of Cleaner Production, 2023, 397:136468. doi: 10.1016/j.jclepro.2023.136468
|
46 |
JIA Hanzhong, ZHAO Song, ZHU Kecheng,et al. Activate persulfate for catalytic degradation of adsorbed anthracene on coking residues:Role of persistent free radicals[J]. Chemical Engineering Journal, 2018, 351:631-640. doi: 10.1016/j.cej.2018.06.147
|
47 |
|
|
AN Qi, LIU Jianguang. Research progress of bromate formation and control in AOPs based on hydroxyl radical or sulfate radical[J]. Water Purification Technology, 2021, 40(12):5-11. doi: 10.15890/j.cnki.jsjs.2021.12.002
|
48 |
DUAN Xiaoguang, SUN Hongqi, WANG Yuxian,et al. N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation[J]. ACS Catalysis, 2015, 5(2):553-559. doi: 10.1021/cs5017613
|
49 |
DUAN Xiaoguang, SUN Hongqi, TADE M,et al. Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes[J]. Catalysis Today, 2018, 307:140-146. doi: 10.1016/j.cattod.2017.04.038
|
50 |
YANG Zhichao, QIAN Jieshu, SHAN Chao,et al. Toward selective oxidation of contaminants in aqueous systems[J]. Environmental Science & Technology, 2021, 55(21):14494-14514. doi: 10.1021/acs.est.1c05862
|
51 |
DONG Jie, XU Weihua, LIU Shaobo,et al. Recent advances in applications of nonradical oxidation in water treatment:Mechanisms,catalysts and environmental effects[J]. Journal of Cleaner Production, 2021, 321:128781. doi: 10.1016/j.jclepro.2021.128781
|
52 |
YUN E T, LEE J H, KIM J,et al. Identifying the nonradical mechanism in the peroxymonosulfate activation process:Singlet oxygenation versus mediated electron transfer[J]. Environmental Science & Technology, 2018, 52(12):7032-7042. doi: 10.1021/acs.est.8b00959
|
53 |
ZHEN Yufei, ZHU Shishu, SUN Zhiqiang,et al. Identifying the persistent free radicals(PFRs) formed as crucial metastable intermediates during peroxymonosulfate(PMS) activation by N-doped carbonaceous materials[J]. Environmental Science & Technology, 2021, 55(13):9293-9304. doi: 10.1021/acs.est.1c01974
|
54 |
WU Liying, SUN Zhiqiang, ZHEN Yufei,et al. Oxygen vacancy-induced nonradical degradation of organics:Critical trigger of oxygen(O 2) in the Fe-Co LDH/peroxymonosulfate system[J]. Environmental Science & Technology, 2021, 55(22):15400-15411. doi: 10.1021/acs.est.1c04600
|
55 |
CHEN Feng, WU Xilin, YANG Liu,et al. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst[J]. Chemical Engineering Journal, 2020, 394:124904. doi: 10.1016/j.cej.2020.124904
|
56 |
|
|
SHI Chenyang, FU Du, WANG Juan,et al. Single-atom Cu supported on carbon nitride for activation of persulfate under visible light irradiation[J]. Scientia Sinica Chimica, 2021, 51(8):1104-1112. doi: 10.1360/ssc-2021-0043
|
57 |
|
|
XU Jie, WANG Keqing, TIAN Dan,et al. Degradation of AO7 with peroxymonosulfate catalyzed by Co-C-N single atom[J]. China Environmental Science, 2021, 41(1):151-160. doi: 10.3969/j.issn.1000-6923.2021.01.017
|
58 |
ZHAO Xue, LI Xue, ZHU Zhu,et al. Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen[J]. Applied Catalysis B:Environmental, 2022, 300:120759. doi: 10.1016/j.apcatb.2021.120759
|
59 |
YAO Yunjin, YIN Hongyu, GAO Mengxue,et al. Electronic structure modulation of covalent organic frameworks by single-atom Fe doping for enhanced oxidation of aqueous contaminants[J]. Chemical Engineering Science, 2019, 209:115211. doi: 10.1016/j.ces.2019.115211
|
60 |
ZUO Sijin, JIN Xuming, WANG Xinwei,et al. Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values[J]. Applied Catalysis B:Environmental, 2021, 282:119551. doi: 10.1016/j.apcatb.2020.119551
|
61 |
彭小明,吴健群,戴红玲,等. Fe、N共掺杂原子级分散Fe-g-C3N4催化剂活化过硫酸盐降解亚甲基蓝的机制[J].环境科学学报,2022,42(5):225-236.
|
|
PENG Xiaoming, WU Jianqun, DAI Hongling,et al. Degradation mechanism of methylene blue by Fe-g-C3N4(600)catalyst activation peroxymonosulfate[J]. Acta Scientiae Circumstantiae,2022,42(5):225-236.
|