1 |
CHEN Zhan, ZHANG Weijun, WANG Dongsheng, et al. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation[J]. Water Research, 2016, 103: 170-181. doi: 10.1016/j.watres.2016.07.018
|
2 |
|
|
ZHA Xiangyi, HAN Chunwei, GONG Lei. Influences of hydrothermal pre-treatment on the organic matter released from residual activated sludge[J]. Industrial Water Treatment, 2017, 37(10): 35-38. doi: 10.11894/1005-829x.2017.37(10).035
|
3 |
ZHENG Tianlong, ZHANG Ke, CHEN Xiangyu, et al. Effects of low- and high-temperature thermal-alkaline pretreatments on anaerobic digestion of waste activated sludge[J]. Bioresource Technology, 2021, 337: 125400. doi: 10.1016/j.biortech.2021.125400
|
4 |
AO Tianjie, XIE Zhijie, ZHOU Pan, et al. Comparison of microbial community structures between mesophilic and thermophilic anaerobic digestion of vegetable waste[J]. Bioprocess and Biosystems Engineering, 2021, 44(6): 1201-1214. doi: 10.1007/s00449-021-02519-5
|
5 |
WU Lijie, LI Xiaoxiao, LIU Yuxiang, et al. Optimization of hydrothermal pretreatment conditions for mesophilic and thermophilic anaerobic digestion of high-solid sludge[J]. Bioresource Technology, 2021, 321: 124454. doi: 10.1016/j.biortech.2020.124454
|
6 |
CAI Mengmeng, HONG C, ZHAO Qingliang, et al. Optimal production of polyhydroxyalkanoates(PHA) in activated sludge fed by volatile fatty acids(VFAs) generated from alkaline excess sludge fermentation[J]. Bioresource Technology, 2009, 100(3): 1399-1405.
|
7 |
|
|
GB 5009.5—2010 National food safety standard Determination of protein in foods [S]. doi: 10.1002/pbc.v54:5
|
8 |
YUAN Hongying, CHEN Yinguang, ZHANG Huaxing, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environmental Science & Technology, 2006, 40(6): 2025-2029. doi: 10.1021/es052252b
|
9 |
MIRON Y, ZEEMAN G, VAN LIER J B, et al. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems[J]. Water Research, 2000, 34(5): 1705-1713. doi: 10.1016/S0043-1354(99)00280-8
|
10 |
|
|
XIE Chaobo, WU Jing, CAO Zhiping, et al. 3-D fluorescence properties of river with great flow rate[J]. Spectroscopy and Spectral Analysis, 2014, 34(3): 695-697. doi: 10.3964/j.issn.1000-0593(2014)03-0695-03
|
11 |
PETERSON G L. Review of the folin phenol protein quantitation method of Lowry, rosebrough, farr and randall[J]. Analytical Biochemistry, 1979, 100(2): 201-220. doi: 10.1016/0003-2697(79)90222-7
|
12 |
HERBERT D, PHILIPPS P J, STRANGE R E. Carbohydrate analysis Methods Enzymol[J]. Methods Enzymol, 1971, 5B:265-277.
|
13 |
|
|
|
14 |
BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917. doi: 10.1139/o59-099
|
15 |
|
|
LIU Yanling, REN Nanqi, LIU Min, et al. Analysis of volatile fatty acid(VFA) in anaerobic bio-reactor by gas chromatography[J]. Journal of Harbin University of Civil Engineering and Architecture, 2000(6): 31-34. doi: 10.1038/sj.cr.7290056
|
16 |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 210-230.
|
17 |
BRITTAIN H G. What is the “correct” method to use for particle-size determination[J]. Pharmaceutical Technology, 2001, 25(7): 96-98.
|
18 |
GAVALA H N, ANGELIDAKI I, AHRING B K. Kinetics and modeling of anaerobic digestion process[J]. Advances in Biochemical Engineering/Biotechnology, 2003, 81: 57-93. doi: 10.1007/3-540-45839-5_3
|
19 |
SIEGRIST H, VOGT D, GARCIA-HERAS J L, et al. Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion[J]. Environmental Science & Technology, 2002, 36(5): 1113-1123. doi: 10.1021/es010139p
|
20 |
MARTÍNEZ E J, FIERRO J, SÁNCHEZ M E, et al. Anaerobic co-digestion of FOG and sewage sludge: Study of the process by Fourier transform infrared spectroscopy[J]. International Biodeterioration & Biodegradation, 2012, 75: 1-6. doi: 10.1016/j.ibiod.2012.07.015
|
21 |
KIM M, AHN Y H, SPEECE R E. Comparative process stability and efficiency of anaerobic digestion;mesophilic vs. thermophilic[J]. Water Research, 2002, 36(17): 4369-4385. doi: 10.1016/s0043-1354(02)00147-1
|
22 |
SONG Y C, KWON S J, WOO J H. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge[J]. Water Research, 2004, 38(7): 1653-1662. doi: 10.1016/j.watres.2003.12.019
|
23 |
CHEN Wen, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. doi: 10.1021/es034354c
|
24 |
WANG Zhiwei, WU Zhichao, TANG Shujuan. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy[J]. Water Research, 2009, 43(6): 1533-1540. doi: 10.1016/j.watres.2008.12.033
|
25 |
BENNER R. Biology of anaerobic microorganisms[M]. John Wiley & Sons, Co., 1988.
|
26 |
RAMSAY I R, PULLAMMANAPPALLIL P C. Protein degradation during anaerobic wastewater treatment: Derivation of stoichiometry[J]. Biodegradation, 2001, 12(4): 247-257. doi: 10.1023/a:1013116728817
|
27 |
张自杰. 排水工程-下册[M]. 4版. 北京: 中国建筑工业出版社, 2000.
|