1 |
蔡涵颖,王文龙,吴乾元,等. 中国电子级超纯水自主化制备关键难题与解决思路[J]. 工业水处理,2023,43(6):1-6.
|
|
CAI Hanying, WANG Wenlong, WU Qianyuan,et al. Key problems and novel strategy of autonomous preparation for electronic-grade ultrapure water in China[J]. Industrial Water Treatment,2023,43(6):1-6.
|
2 |
LI Mengkai, QIANG Zhimin, HOU Pin,et al. VUV/UV/chlorine as an enhanced advanced oxidation process for organic pollutant removal from water:Assessment with a novel mini-fluidic VUV/UV photoreaction system(MVPS)[J]. Environmental Science & Technology, 2016, 50(11):5849-5856. doi: 10.1021/acs.est.6b00133
|
3 |
PHILIPPE Rychen, JULIEN Magnan,OVIVO. Photolytic generation and catalytic degradation of hydrogen peroxide in ultra pure water[C]. Ultrapure water Micro Conference,2016.
|
4 |
村山雅美,矢野大作. フッ化水素酸水溶液の精製方法、基板処理方法および基板処理装置:JP6100664B2[P]. 2017-03-22.
|
5 |
娄宇,郑伟,杨光明,等. 纳米制程集成电路清洗水的制备方法:CN202211436541X[P]. 2023-04-07.
|
6 |
RASTEGAR A, HOUSE M, SAMAYOA M. Understanding UPW-induced particle defectivity in sub10 nm technology nodes[C]. Phoenix:Ultrapure Water Micro, 2014. doi: 10.1117/12.2048080
|
7 |
ZHANG Xinbo, YANG Yuanying, NGO H H,et al. A critical review on challenges and trend of ultrapure water production process[J]. The Science of the Total Environment, 2021, 785:147254. doi: 10.1016/j.scitotenv.2021.147254
|
8 |
|
9 |
ABE T, NOMURA A, AMAYA T,et al. The deterioration of ultrapure water quality under the influence of hydrogen peroxide[J]. Journal of Ion Exchange, 2003, 14:273-276. doi: 10.5182/jaie.14.supplement_273
|
10 |
胡龙兴,徐文超,吴文蕾. 分解过氧化氢的铁氧体催化剂的制备方法及其应用:CN110215924A[P]. 2019-09-10.
|
11 |
HIDEKI Kobayashi. Method and apparatus for removing hydrogen peroxide:WO2007081054A1[P]. 2007-01-11.
|
12 |
PLAUCK A, STANGLAND E E, DUMESIC J A,et al. Active sites and mechanisms for H 2O 2 decomposition over Pd catalysts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14):E1973-E1982. doi: 10.1073/pnas.1602172113
|
13 |
森田博志,港康晴. 過酸化水素除去方法及び装置:JP6451824B2[P]. 2019-01-16.
|
14 |
CAI Hanying, WU Qianyuan, OUYANG Wanyue,et al. Efficient removal of electroneutral carbonyls by combined vacuum-UV oxidation and anion-exchange resin adsorption:Mechanism,model simulation,and optimization[J]. Water Research, 2023, 243:120435. doi: 10.1016/j.watres.2023.120435
|
15 |
SERRANO MORA A, MOHSENI M. Temperature dependence of the absorbance of 185 nm photons by water and commonly occurring solutes and its influence on the VUV advanced oxidation process[J]. Environmental Science:Water Research & Technology, 2018, 4(9):1303-1309. doi: 10.1039/c8ew00302e
|
16 |
邵婉婷,王文龙,杜烨,等. 双波长紫外线(VUV/UV)对有机污染物强化去除特性与原理[J]. 环境科学研究,2021,34(6):1397-1406.
|
|
SHAO Wanting, WANG Wenlong, DU Ye,et al. Enhancement and synergism of VUV/UV irradiation on elimination of organic pollutants[J]. Research of Environmental Sciences,2021,34(6):1397-1406.
|
17 |
BAGHERI M, MOHSENI M. A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water[J]. Journal of Hazardous Materials, 2015, 294:1-8. doi: 10.1016/j.jhazmat.2015.03.036
|
18 |
YANG Laxiang, LI Mengkai, LI Wentao,et al. A green method to determine VUV(185 nm) fluence rate based on hydrogen peroxide production in aqueous solution[J]. Photochemistry and Photobiology, 2018, 94(4):821-824. doi: 10.1111/php.12913
|
19 |
IMOBERDORF G, MOHSENI M. Modeling and experimental evaluation of vacuum-UV photoreactors for water treatment[J]. Chemical Engineering Science, 2011, 66(6):1159-1167. doi: 10.1016/j.ces.2010.12.020
|
20 |
BAGHERI M, MOHSENI M. Pilot-scale treatment of 1,4-dioxane contaminated waters using 185 nm radiation:Experimental and CFD modeling[J]. Journal of Water Process Engineering, 2017, 19:185-192. doi: 10.1016/j.jwpe.2017.06.015
|
21 |
HAN D H, CHA S Y, YANG H Y. Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H 2O 2 process and kinetic study[J]. Water Research, 2004, 38(11):2782-2790. doi: 10.1016/j.watres.2004.03.025
|
22 |
OUYANG Wanyue, WANG Wenlong, ZHANG Yilin,et al. VUV/UV oxidation performance for the elimination of recalcitrant aldehydes in water and its variation along the light-path[J]. Water Research, 2023, 228(Pt A):119390. doi: 10.1016/j.watres.2022.119390
|
23 |
MIYAZAKI Y. Advanced hydrogen peroxide removal technology using nano-sized Pt particle catalyst supported on anion exchange resin[C]. ULTRAPURE WATER Micro Conference,2013.
|
24 |
YANO D, MURAYAMA M, TAKAHASHI M,et al. Inhibition of copper dissolution by removal of oxidants from rinsing water using noble metal catalysts[C].The 61st JSAP Spring Meeting. Aoyama Gakuin University, 2014. doi: 10.1149/ma2013-02/30/2113
|
25 |
TOKURI K, YAMASHITA Y, SHIOHARA M,et al. Effect of pattern layout and dissolved oxygen in CO 2 rinse water on Cu corrosion during post-etch cleaning[J]. Japanese Journal of Applied Physics, 2010, 49(5S2):05FF04. doi: 10.1143/jjap.49.05ff04
|
26 |
MASAOKA T, GAN N, FUJIMURA Y,et al. Effect of dilute hydrogen peroxide in ultrapure water on SiGe epitaxial process[J]. Solid State Phenomena, 2016, 255:27-30. doi: 10.4028/www.scientific.net/ssp.255.27
|
27 |
段路强. 外延雾表面研究及设备改善[J]. 科技创新与应用,2018(21):104-106.
|
|
DUAN Luqiang. Study on epitaxial fog surface and improvement of equipment[J]. Technology Innovation and Application,2018(21):104-106.
|
28 |
JOCHEN Ruth, GERD Heser, PHILIPPE Rychen,et al. Impact of H2O2 concentration in UPW on(Ultra) filters performance[C]. Ultrapure water Micro Conference,2023.
|
29 |
ZHU Jun, ZHOU Jinghong, ZHAO Tiejun,et al. Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction[J]. Applied Catalysis A:General, 2009, 352(1/2):243-250. doi: 10.1016/j.apcata.2008.10.012
|
30 |
BRADU C, CĂPĂŢ C, PAPA F,et al. Pd-Cu catalysts supported on anion exchange resin for the simultaneous catalytic reduction of nitrate ions and reductive dehalogenation of organochlorinated pollutants from water[J]. Applied Catalysis A:General, 2019, 570:120-129. doi: 10.1016/j.apcata.2018.11.002
|
31 |
LI Haodong, XIA Yuetong, WEN Langyou,et al. Preparation and application of functional resin-supported noble metal catalysts[J]. Petrochemical Technology,2021,50(1):8.
|
32 |
HAN Bing, LIU Wen, LI Jingwen,et al. Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts[J]. Water Research, 2017, 120:199-210. doi: 10.1016/j.watres.2017.04.059
|
33 |
郑伟,杨光明,程星华,等. 一种精处理回路提纯水的的系统:CN115893769B[P]. 2023-05-18.
|
34 |
郑伟,杨光明,程星华,等. 一种痕量微污染物的在线分析装置:CN202321604866.4[P]. 2023-06-21.
|
35 |
佐々木慶介,高桥一重,高桥悠介,等. 水処理方法及び装置:JP2022138429A[P]. 2022-09-26.
|
36 |
LOUSADA C M, JOHANSSON A J, BRINCK T,et al. Reactivity of metal oxide clusters with hydrogen peroxide and water:A DFT study evaluating the performance of different exchange-correlation functionals[J]. Physical Chemistry Chemical Physics:PCCP, 2013, 15(15):5539-5552. doi: 10.1039/c3cp44559c
|
37 |
LI Jun, STAYKOV A, ISHIHARA T,et al. Theoretical study of the decomposition and hydrogenation of H 2O 2 on Pd and Au@Pd surfaces:Understanding toward high selectivity of H 2O 2 synthesis[J]. The Journal of Physical Chemistry C, 2011, 115(15):7392-7398. doi: 10.1021/jp1070456
|
38 |
NTAINJUA N E, EDWARDS J K, CARLEY A F,et al. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide[J]. Green Chemistry, 2008, 10(11):1162-1169. doi: 10.1039/b809881f
|
39 |
CHOUDHARY V R, SAMANTA C, JANA P. Decomposition and/or hydrogenation of hydrogen peroxide over Pd/Al 2O 3 catalyst in aqueous medium:Factors affecting the rate of H 2O 2 destruction in presence of hydrogen[J]. Applied Catalysis A:General, 2007, 332(1):70-78. doi: 10.1016/j.apcata.2007.08.004
|
40 |
PAUNOVIC V, ORDOMSKY V V, SUSHKEVICH V L,et al. Direct synthesis of hydrogen peroxide over Au-Pd catalyst:The effect of co-solvent addition[J]. ChemCatChem, 2015, 7(7):1161-1176. doi: 10.1002/cctc.201500050
|
41 |
DEGUCHI T, YAMANO H, IWAMOTO M. Kinetic and mechanistic studies on direct H 2O 2 synthesis from H 2 and O 2 catalyzed by Pd in the presence of H + and Br-in water:A comprehensive paper[J]. Catalysis Today, 2015, 248:80-90. doi: 10.1016/j.cattod.2014.04.008
|
42 |
李新立. 氢氧直接合成过氧化氢的机理及动力学研究[D]. 郑州大学,2020.
|
|
LI Xinli. Kinetics of direct synthesis of hydrogen peroxide from hydrogen and oxygen[D]. Zhengzhou University,2020.
|
43 |
SAMANTA C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen:An overview of recent developments in the process[J]. Applied Catalysis A:General, 2008, 350(2):133-149. doi: 10.1016/j.apcata.2008.07.043
|
44 |
WILSON N M, PRIYADARSHINI P, KUNZ S,et al. Direct synthesis of H 2O 2 on Pd and Au x Pd1 clusters:Understanding the effects of alloying Pd with Au[J]. Journal of Catalysis, 2018, 357:163-175. doi: 10.1016/j.jcat.2017.10.028
|
45 |
KIM S, LEE D W, LEE K Y. Shape-dependent catalytic activity of palladium nanoparticles for the direct synthesis of hydrogen peroxide from hydrogen and oxygen[J]. Journal of Molecular Catalysis A:Chemical, 2014, 391:48-54. doi: 10.1016/j.molcata.2014.03.026
|
46 |
TU Weifeng, LI Xinli, WANG Renquan,et al. Catalytic consequences of the identity of surface reactive intermediates during direct hydrogen peroxide formation on Pd particles[J]. Journal of Catalysis, 2019, 377:494-506. doi: 10.1016/j.jcat.2019.07.047
|
47 |
郑伟. 超纯液相环境纳米金属催化降除多元微污染物特性与机理[J]. 给水排水,2024,50(1):66-77.
|
|
ZHENG Wei. Characteristics and mechanism of catalytic degradation of multiple micropollutants by nano-metals in ultra-pure water[J]. Water & Wastewater Engineering,2024,50(1):66-77.
|
48 |
郑伟,程星华,杨光明,等. 先进芯片制造用清洗水的提纯装置与方法:CN115626745A[P]. 2023-05-12.
|
49 |
LANDON P, COLLIER P J, CARLEY A F,et al. Direct synthesis of hydrogen peroxide from H 2 and O 2 using Pd and Au catalysts[J]. Physical Chemistry Chemical Physics, 2003, 5(9):1917-1923. doi: 10.1039/b211338b
|
50 |
CHOUDHARY V, SAMANTA C. Role of chloride or bromide anions and protons for promoting the selective oxidation of H 2 by O 2 to H 2O 2 over supported Pd catalysts in an aqueous medium[J]. Journal of Catalysis, 2006, 238(1):28-38. doi: 10.1016/j.jcat.2005.11.024
|
51 |
BREHM J, LEWIS R J, MORGAN D J,et al. The direct synthesis of hydrogen peroxide over AuPd nanoparticles:An investigation into metal loading[J]. Catalysis Letters, 2022, 152(1):254-262. doi: 10.1007/s10562-021-03632-6
|
52 |
LIANG Hairui, WANG Li, LIU Guozhu. A review of recent development on catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen[J]. Chemical Industry and Engineering Progress,2021,40(4):2060-2069.
|
53 |
TIAN Pengfei, OUYANG Like, XU Xinchao,et al. Density functional theory study of direct synthesis of H 2O 2 from H 2 and O 2 on Pd(111),Pd(100),and Pd(110) surfaces[J]. Chinese Journal of Catalysis, 2013, 34(5):1002-1012. doi: 10.1016/s1872-2067(12)60537-3
|
54 |
EDWARDS J K, SOLSONA B, EDWIN NTAINJUA N,et al. Switching off hydrogen peroxide hydrogenation in the direct synthesis process[J]. Science, 2009, 323(5917):1037-1041. doi: 10.1126/science.1168980
|
55 |
CHINTA S. A mechanistic study of H 2O 2 and H 2O formation from H 2 and BO 2 catalyzed by palladium in an aqueous medium[J]. Journal of Catalysis, 2004, 225(1):249-255. doi: 10.1016/j.jcat.2004.04.014
|
56 |
EDWARDS J K, THOMAS A, SOLSONA B E,et al. Comparison of supports for the direct synthesis of hydrogen peroxide from H 2 and O 2 using Au-Pd catalysts[J]. Catalysis Today, 2007, 122(3/4):397-402. doi: 10.1016/j.cattod.2007.01.046
|
57 |
CHOUDHARY V R, SAMANTA C, CHOUDHARY T V. Factors influencing decomposition of H 2O 2 over supported Pd catalyst in aqueous medium[J]. Journal of Molecular Catalysis A:Chemical, 2006, 260(1/2):115-120. doi: 10.1016/j.molcata.2006.07.009
|
58 |
GAIKWAD A. Direct oxidation of hydrogen to hydrogen peroxide over Pd-containing fluorinated or sulfated Al 2O 3,ZrO 2,CeO 2,ThO 2,Y 2O 3 and Ga 2O 3 catalysts in stirred slurry reactor at ambient conditions[J]. Journal of Molecular Catalysis A:Chemical, 2002, 181(1/2):143-149. doi: 10.1016/s1381-1169(01)00359-4
|
59 |
CHOUDHARY V R, GAIKWAD A G, SANSARE S D. Activation of supported Pd metal catalysts for selective oxidation of hydrogen to hydrogen peroxide[J]. Catalysis Letters, 2002, 83(3):235-239. doi: 10.1023/a:1021066904862
|
60 |
CHOUDHARY V R, SANSARE S D, GAIKWAD A G. Direct oxidation of H2 to H2O2 and decomposition of H2O2 over oxidized and reduced Pd-containing zeolite catalysts in acidic medium[J]. Catalysis Letters,2002,84(1):81-87.
|
61 |
MELADA S, RIODA R, MENEGAZZO F,et al. Direct synthesis of hydrogen peroxide on zirconia-supported catalysts under mild conditions[J]. Journal of Catalysis, 2006, 239(2):422-430. doi: 10.1016/j.jcat.2006.02.014
|
62 |
高橋悠介,佐木慶介,高橋一重,等. 水処理装置、超純水製造装置、水処理方法及び再生型イオン交換塔:JP7012196B1[P]. 2022-01-27.
|
63 |
井上洋,山中弘次,鈴木陽代,等. イオン吸着モジュール及び水処理方法:JP5465463B2[P]. 2014-04-09.
|
64 |
TAKADA H, INOUE H, NAKAMURA A,et al. Synthesis and applications of monolithic ion exchange resin[J]. Journal of Ion Exchange, 2014, 25(4):73-80. doi: 10.5182/jaie.25.73
|
65 |
矢野大作,山下幸福,村山雅美,等. Substrate treatment method and substrate treatment equipment:US20210249259A1[P]. 2021-08-12.
|
66 |
SUNDSTROM GLEN P. Systems and methods for measuring composition of water:US20210181167A1[P]. 2021-06-17.
|
67 |
郑伟,杨光明,程星华,等. 一种气相定量测定亚ppb级污染物的方法:CN116380981A[P]. 2023-06-07.
|
68 |
佐佐木慶介,须藤史生,高橋一重,等. 過酸化水素除去方法および過酸化水素除去装置並びに純水製造装置:JP2022002829A[P]. 2022-01-11.
|
69 |
佐佐木慶介,阿部真弓. 水処理方法及び水処理装置:JP2022138431A[P]. 2022-09-26.
|
70 |
CAI Hanying, WU Qianyuan, OUYANG Wanyue,et al. Adsorption of low-molecular-weight carboxylic acids to anion exchange resins with various properties and the mechanisms of interaction[J]. ACS ES&T Water, 2023, 3(1):60-69. doi: 10.1021/acsestwater.2c00376
|