1 |
YU Chaoqing, HUANG Xiao, CHEN Han,et al. Managing nitrogen to restore water quality in China[J]. Nature, 2019, 567(7749):516-520. doi: 10.1038/s41586-019-1001-1
|
2 |
|
3 |
WANG Xiaowei, TAN Xin, DANG Chengcheng,et al. Thermophilic microorganisms involved in the nitrogen cycle in thermal environments:Advances and prospects[J]. Science of the Total Environment, 2023, 896:165259. doi: 10.1016/j.scitotenv.2023.165259
|
4 |
WANG Jiahong, SHARAF F, KANWAL A. Nitrate pollution and its solutions with special emphasis on electrochemical reduction removal[J]. Environmental Science and Pollution Research International, 2023, 30(4):9290-9310. doi: 10.1007/s11356-022-24450-2
|
5 |
LIU Yong, ZHANG Xuemei, WANG Jianlong. A critical review of various adsorbents for selective removal of nitrate from water:Structure,performance and mechanism[J]. Chemosphere, 2022, 291(Pt 1):132728. doi: 10.1016/j.chemosphere.2021.132728
|
6 |
SCHOLES R C, VEGA M A, SHARP J O,et al. Nitrate removal from reverse osmosis concentrate in pilot-scale open-water unit process wetlands[J]. Environmental Science:Water Research & Technology, 2021, 7(3):650-661. doi: 10.1039/d0ew00911c
|
7 |
ZHANG Zhengwen, XU Chunyan, HAN Hongjun,et al. Effect of low-intensity electric current field and iron anode on biological nitrate removal in wastewater with low COD to nitrogen ratio from coal pyrolysis[J]. Bioresource Technology, 2020, 306:123123. doi: 10.1016/j.biortech.2020.123123
|
8 |
CURCIO G M, LIMONTI C, SICILIANO A,et al. Nitrate removal by zero-valent metals:A comprehensive review[J]. Sustainability, 2022, 14(8):4500. doi: 10.3390/su14084500
|
9 |
WANG Yuting, WANG Changhong, LI Mengyang,et al. Nitrate electroreduction:Mechanism insight,in situ characterization,performance evaluation,and challenges[J]. Chemical Society Reviews, 2021, 50(12):6720-6733. doi: 10.1039/d1cs00116g
|
10 |
ZENG Yachao, PRIEST C, WANG Guofeng,et al. Restoring the nitrogen cycle by electrochemical reduction of nitrate:Progress and prospects[J]. Small Methods, 2020, 4(12):2000672. doi: 10.1002/smtd.202000672
|
11 |
WANG Zixuan, RICHARDS D, SINGH N. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction[J]. Catalysis Science & Technology, 2021, 11(3):705-725. doi: 10.1039/d0cy02025g
|
12 |
HE Anbang, YANG Yong, TAO Shuhui,et al. In situ encapsulated Co 3O 4 nanoparticles into self-catalyzed grown CNTs for efficient CO 2 conversion[J]. Fuel, 2024, 358:130057. doi: 10.1016/j.fuel.2023.130057
|
13 |
BAI Yarong, DONG Junping, HOU Yaqin,et al. Co 3O 4@PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NO x with NH 3 at low temperature[J]. Chemical Engineering Journal, 2019, 361:703-712. doi: 10.1016/j.cej.2018.12.109
|
14 |
聂华芳,杨庆峰,刘登科,等. Co3O4-钛基纳米电极去除工业废水中硝酸盐的研究[J]. 工业水处理,2022,42(10):84-90.
|
|
NIE Huafang, YANG Qingfeng, LIU Dengke,et al. Co3O4-titanium-based nanoelectrode for nitrate removal from industrial wastewater[J]. Industrial Water Treatment,2022,42(10):84-90.
|
15 |
GAO Jianan, JIANG Bo, NI Congcong,et al. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co 3O 4 cathode:Mechanism exploration from both experimental and DFT studies[J]. Chemical Engineering Journal, 2020, 382:123034. doi: 10.1016/j.cej.2019.123034
|
16 |
LIU Jinxun, RICHARDS D, SINGH N,et al. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals[J]. ACS Catalysis, 2019, 9(8):7052-7064. doi: 10.1021/acscatal.9b02179
|
17 |
WU Shaorui, LIU Jingbing, WANG Hao,et al. A review of performance optimization of MOF-derived metal oxide as electrode materials for supercapacitors[J]. International Journal of Energy Research, 2019, 43(2):697-716. doi: 10.1002/er.4232
|
18 |
SONG Qinan, ZHANG Shuo, HOU Xiaoshu,et al. Efficient electrocatalytic nitrate reduction via boosting oxygen vacancies of TiO 2 nanotube array by highly dispersed trace Cu doping[J]. Journal of Hazardous Materials, 2022, 438:129455. doi: 10.1016/j.jhazmat.2022.129455
|
19 |
|
|
LI Xiangfei. Study on the performance and mechanism of CuO and its complex activated PMS degradation of organic pollutants[D]. Enshi:Hubei Minzu University, 2024. doi: 10.1016/j.jclepro.2023.136468
|
20 |
KUMAR P, INWATI G K, MATHPAL M C,et al. Defects induced enhancement of antifungal activities of Zn doped CuO nanostructures[J]. Applied Surface Science, 2021, 560:150026. doi: 10.1016/j.apsusc.2021.150026
|
21 |
AWUAL M R, ASIRI A M, RAHMAN M M,et al. Assessment of enhanced nitrite removal and monitoring using ligand modified stable conjugate materials[J]. Chemical Engineering Journal, 2019, 363:64-72. doi: 10.1016/j.cej.2019.01.125
|
22 |
GAO Jianan, JIANG Bo, NI Congcong,et al. Non-precious Co 3O 4-TiO 2/Ti cathode based electrocatalytic nitrate reduction:Preparation,performance and mechanism[J]. Applied Catalysis B:Environmental, 2019, 254:391-402. doi: 10.1016/j.apcatb.2019.05.016
|
23 |
LIMA A S, SALLES M O, FERREIRA T L,et al. Scanning electrochemical microscopy investigation of nitrate reduction at activated copper cathodes in acidic medium[J]. Electrochimica Acta, 2012, 78:446-451. doi: 10.1016/j.electacta.2012.06.075
|
24 |
GARCIA-SEGURA S, LANZARINI-LOPES M, HRISTOVSKI K,et al. Electrocatalytic reduction of nitrate:Fundamentals to full-scale water treatment applications[J]. Applied Catalysis B:Environmental, 2018, 236:546-568. doi: 10.1016/j.apcatb.2018.05.041
|
25 |
WANG Jing, FENG Tao, CHEN Jiaxin,et al. Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes[J]. Nano Energy, 2021, 86:106088. doi: 10.1016/j.nanoen.2021.106088
|
26 |
LIU Xinrui, GUO Rui, QIN Xia,et al. Enhanced selective nitrate-to-nitrogen electrocatalytic reduction by CNTs doped Ni foam/Cu electrode coupled with Cl - [J]. Journal of Water Process Engineering, 2023, 54:104067. doi: 10.1016/j.jwpe.2023.104067
|
27 |
WU Tianyi, KONG Xiangang, TONG Siyuan,et al. Self-supported Cu nanosheets derived from CuCl-CuO for highly efficient electrochemical degradation of NO 3 - [J]. Applied Surface Science, 2019, 489:321-329. doi: 10.1016/j.apsusc.2019.05.358
|
28 |
MAO Ran, LI Ning, LAN Huachun,et al. Dechlorination of trichloroacetic acid using a noble metal-free graphene-Cu foam electrode via direct cathodic reduction and atomic H[J]. Environmental Science & Technology, 2016, 50(7):3829-3837. doi: 10.1021/acs.est.5b05006
|
29 |
WANG Jiahong, ZHANG Zhen, WANG Si. Facile fabrication of Ag/GO/Ti electrode by one-step electrodeposition for the enhanced cathodic reduction of nitrate pollution[J]. Journal of Water Process Engineering, 2021, 40:101839. doi: 10.1016/j.jwpe.2020.101839
|
30 |
KUANG Peijing, FENG Chuanping, LI Miao,et al. Improvement on electrochemical reduction of nitrate in synthetic groundwater by reducing anode surface area[J]. Journal of the Electrochemical Society, 2017, 164(6):E103-E112. doi: 10.1149/2.0831706jes
|
31 |
WU Yudong, LU Kunkun, XU Lianhua. Progress and prospects of electrochemical reduction of nitrate to restore the nitrogen cycle[J]. Journal of Materials Chemistry A, 2023, 11(33):17392-17417. doi: 10.1039/d3ta01592k
|