| 1 | 王兴亚.利用先进纳米探测技术对纳米气泡特性的研究[D].上海:中国科学院上海应用物理研究所, 2018. URL
 | 
																													
																						| 2 | Wang Y L ,  Wang N ,  Jia R , et al.  Research on CFD numerical simulation and flow field characteristics of countercurrent-cocurrent dissolved air flotation[J]. Water Science & Technology, 2018, 77 (5): 1280- 1292. URL
 | 
																													
																						| 3 | Agarwal A ,  Ng W J ,  Liu Y .  Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84 (9): 1175- 1180. doi: 10.1016/j.chemosphere.2011.05.054
 | 
																													
																						| 4 | Shu L ,  Wang Q ,  Ma H , et al.  Effect of micro-bubbles on coagulation flotation process of dyeing wastewater[J]. Separation & Purification Technology, 2010, 71 (3): 337- 346. URL
 | 
																													
																						| 5 | Ushikubo F Y ,  Furukawa T ,  Nakagawa R , et al.  Evidence of the existence and the stability of nano-bubbles in water[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2010, 361 (1/2/3): 31- 37. URL
 | 
																													
																						| 6 | Pérez-Garibay R ,  Martínez-Ramos E ,  Rubio J .  Gas dispersion measurements in microbubble flotation systems[J]. Minerals Engineering, 2012, 26, 34- 40. doi: 10.1016/j.mineng.2011.10.006
 | 
																													
																						| 7 | Khuntia S ,  Majumder S K ,  Ghosh P .  Microbubble-aided water and wastewater purification:a review[J]. Reviews in Chemical Engineering, 2012, 28, 191- 221. URL
 | 
																													
																						| 8 | Edzwald J K .  Dissolved air flotation and me[J]. Water Research, 2010, 44 (7): 2077- 2106. doi: 10.1016/j.watres.2009.12.040
 | 
																													
																						| 9 | Ebina K ,  Shi K ,  Hirao M , et al.  Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice[J]. Plos One, 2013, 8 (6): e65339. doi: 10.1371/journal.pone.0065339
 | 
																													
																						| 10 | Terasaka K ,  Hirabayashi A ,  Nishino T , et al.  Development of microbubble aerator for waste water treatment using aerobic activated sludge[J]. Chemical Engineering Science, 2011, 66 (14): 3172- 3179. doi: 10.1016/j.ces.2011.02.043
 | 
																													
																						| 11 | Wu Z ,  Chen H ,  Dong Y , et al.  Cleaning using nanobubbles:defouling by electrochemical generation of bubbles[J]. Journal of Colloid & Interface Science, 2008, 328 (1): 10- 14. URL
 | 
																													
																						| 12 | Temesgen T ,  Bui T T ,  Han M , et al.  Micro and nanobubble technologies as a new horizon for water-treatment techniques:a review[J]. Advances in Colloid and Interface Science, 2017, 246, 40- 51. doi: 10.1016/j.cis.2017.06.011
 | 
																													
																						| 13 | 王静超, 马军, 王静海.  气浮净水技术在给水处理中的应用及研究概况[J]. 工业水处理, 2004, 24 (7): 9- 12. doi: 10.3969/j.issn.1005-829X.2004.07.003
 | 
																													
																						| 14 | 王永磊, 王文浩, 代莎莎, 等.  微纳米气泡发生机理及其应用研究进展[J]. 山东建筑大学学报, 2017, 32 (5): 474- 480. URL
 | 
																													
																						| 15 | Li H ,  Hu L ,  Xia Z .  Impact of groundwater salinity on bioremediation enhanced by micro-nano bubbles[J]. Materials, 2013, 6 (9): 3676- 3687. doi: 10.3390/ma6093676
 | 
																													
																						| 16 | Bui T T ,  Nam S N ,  Han M .  Micro-bubble flotation of freshwater algae:a comparative study of differing shapes and sizes[J]. Separation Science & Technology, 2015, 50 (7): 1066- 1072. URL
 | 
																													
																						| 17 | Dockko S ,  Han M Y .  Fundamental characteristics of bubbles and ramifications for the flotation process[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2004, 50 (12): 207- 214. URL
 | 
																													
																						| 18 | Ahmed N ,  Jameson G J .  The effect of bubble size on the rate of flotation of fine particles[J]. International Journal of Mineral Processing, 1985, 14 (3): 195- 215. doi: 10.1016/0301-7516(85)90003-1
 | 
																													
																						| 19 | Yoon R H .  Microbubble flotation[J]. Minerals Engineering, 1993, 6 (6): 619- 630. doi: 10.1016/0892-6875(93)90116-5
 | 
																													
																						| 20 | Tao D ,  Rick H .  Nanobubble generation and its applications in froth flotation(part Ⅱ):fundamental study and theoretical analysis[J]. Mining Science & Technology, 2010, 20 (2): 159- 177. URL
 | 
																													
																						| 21 | Tai J C ,  Kumar M ,  Chen S Y , et al.  Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater[J]. Separation and Purification Technology, 2007, 58 (1): 61- 67. doi: 10.1016/j.seppur.2007.07.022
 | 
																													
																						| 22 | Liu S ,  Wang Q H ,  Ma H Z , et al.  Effect of micro-bubbles on coagulation floation process of dyeing wastewater[J]. Separation and Purification Technology, 2010, 71 (3): 337- 346. doi: 10.1016/j.seppur.2009.12.021
 | 
																													
																						| 23 | Collins G L ,  Jameson G J .  Experiments on the flotation of fine particles:the influence of particle size and charge[J]. Chemical Engineering Science, 1976, 31 (11): 985- 991. doi: 10.1016/0009-2509(76)87019-4
 | 
																													
																						| 24 | Teixeira M R ,  Sousa V ,  Rosa M J .  Investigating dissolved air flotation performance with cyanobacterial cells and filaments[J]. Water Research, 2010, 44 (11): 3337- 3344. doi: 10.1016/j.watres.2010.03.012
 | 
																													
																						| 25 | Takahashi M ,  Chiba K ,  Li P .  Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. Journal of Physical Chemistry B, 2007, 111 (6): 1343- 1347. doi: 10.1021/jp0669254
 | 
																													
																						| 26 | Han M ,  Kim W ,  Dockko S .  Collision efficiency factor of bubble and particle(alpha bp) in DAF:theory and experimental verification[J]. Water Science & Technology, 2001, 43 (8): 139- 144. URL
 | 
																													
																						| 27 | Tasaki T ,  Wada T ,  Fujimoto K , et al.  Degradation of methyl orange using short-wavelength UV irradiation with oxygen microbubbles[J]. Journal of Hazardous Materials, 2009, 162 (2/3): 1103- 1110. URL
 | 
																													
																						| 28 | Binnig G ,  Quate C F ,  Gerber C .  Atomic force microscope[J]. Physical Review Letters, 2018, 56 (9): 930- 933. URL
 | 
																													
																						| 29 | Oliveira C ,  Rodrigues R T ,  Rubio J .  A new technique for characterizing aerated flocs in a flocculation-microbubble flotation system[J]. International Journal of Mineral Processing, 2010, 96 (1/2/3/4): 36- 44. URL
 | 
																													
																						| 30 | Rodrigues R T ,  Rubio J .  New basis for measuring the size distribution of bubbles[J]. Minerals Engineering, 2003, 16 (8): 757- 765. doi: 10.1016/S0892-6875(03)00181-X
 | 
																													
																						| 31 | Zhang W H ,  Zhang J ,  Zhao B , et al.  Microbubble size distribution measurement in a daf system[J]. Industrial & Engineering Chemistry Research, 2015, 54 (18): 5179- 5183. URL
 | 
																													
																						| 32 | Han M Y ,  Park Y H ,  Yu T J .  Development of a new method of measuring bubble size[J]. Water Science and Technology:Water Supply, 2002, 2 (2): 77- 83. doi: 10.2166/ws.2002.0048
 | 
																													
																						| 33 | Couto H J B ,  Nunes D G ,  Neumann R , et al.  Micro-bubble size distribution measurements by laser diffraction technique[J]. Minerals Engineering, 2009, 22 (4): 330- 335. doi: 10.1016/j.mineng.2008.09.006
 | 
																													
																						| 34 | Butt H J ,  Cappella B ,  Kappl M .  Force measurements with the atomic force microscope:technique, interpretation and applications[J]. Surface Science Reports, 2005, 59 (1/2/3/4/5/6): 1- 152. URL
 | 
																													
																						| 35 | Shu L ,  Oshita S ,  Makino Y , et al.  Oxidative capacity of nanobubbles and its effect on seed germination[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (3): 67- 93. URL
 | 
																													
																						| 36 | Parkinson L ,  Sedev R ,  Fornasiero D , et al.  The terminal rise velocity of 10-100μm diameter bubbles in water[J]. Journal of Colloid and Interface Science, 2008, 322 (1): 168- 172. doi: 10.1016/j.jcis.2008.02.072
 | 
																													
																						| 37 | Takahashi M .  Zeta potential of microbubbles in aqueous solutions:electrical properties of the gas-water interface[J]. Journal of Physical Chemistry B, 2005, 109 (46): 21858- 21864. doi: 10.1021/jp0445270
 | 
																													
																						| 38 | Tomiyama A ,  Celata G P ,  Hosokawa S , et al.  Terminal velocity of single bubbles in surface tension force dominant regime[J]. International Journal of Multiphase Flow, 2002, 28 (9): 1497- 1519. doi: 10.1016/S0301-9322(02)00032-0
 | 
																													
																						| 39 | Azgomi F ,  Gomez C O ,  Finch J A .  Correspondence of gas holdup and bubble size in presence of different frothers[J]. International Journal of Mineral Processing, 2007, 83 (1/2): 1- 11. URL
 | 
																													
																						| 40 | Lundh M ,  Jonsson L ,  Dahlquist J .  The influence of contact zone configuration on the flow structure in a dissolved air flotation pilot plant[J]. Water Research, 2002, 36 (6): 1585- 1595. doi: 10.1016/S0043-1354(01)00357-8
 | 
																													
																						| 41 | Yalcin T ,  Byers A ,  Ughadpaga K .  Dissolved gas method of generating bubbles for potential use in ore flotation[J]. Mineral Processing & Extractive Metallurgy Review, 2002, 23 (3/4): 181- 197. URL
 | 
																													
																						| 42 | Boyer C ,  Duquenne A M ,  Wild G .  Measuring techniques in gas-liquid and gas-liquid-solid reactors[J]. Chemical Engineering Science, 2002, 57 (16): 3185- 3215. doi: 10.1016/S0009-2509(02)00193-8
 | 
																													
																						| 43 | Gomez C O ,  Cortés-López F ,  Finch J A .  Industrial testing of a gas holdup sensor for flotation systems[J]. Minerals Engineering, 2003, 16 (6): 493- 501. doi: 10.1016/S0892-6875(03)00083-9
 | 
																													
																						| 44 | Han M ,  Dockko S .  Zeta potential measurement of bubbles in DAF process and its effect on the removal efficiency[J]. Journal of Civil Engineering, 1998, 2 (4): 461- 466. URL
 | 
																													
																						| 45 | Cho S H ,  Kim J Y ,  Chun J H , et al.  Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2005, 269 (1/2/3): 28- 34. URL
 | 
																													
																						| 46 | Bui T T ,  Han M .  Removal of Phormidium sp. by positively charged bubble flotation[J]. Minerals Engineering, 2015, 72, 108- 114. doi: 10.1016/j.mineng.2014.12.008
 |