工业水处理 ›› 2025, Vol. 45 ›› Issue (1): 115-122. doi: 10.19965/j.cnki.iwt.2023-1196

• 试验研究 • 上一篇    下一篇

气浮旋流中油滴与气泡的运动规律

汪威1,2(), 白旭1,2, 褚晓丹3, 赵翔1,2, 马学良1,2, 林纬1,2(), 龚程1,2, 喻九阳1,2   

  1. 1. 武汉工程大学机电工程学院,湖北 武汉 430010
    2. 湖北省绿色化工装备工程技术研究中心,湖北 武汉 430010
    3. 中石化江汉石油工程有限公司页岩气开采技术服务公司,湖北 武汉 430010
  • 收稿日期:2024-10-17 出版日期:2025-01-20 发布日期:2025-01-22
  • 作者简介:

    汪威(1984— ),博士,副教授。E-mail:

    林纬,博士,副教授。E-mail:

  • 基金资助:
    湖北省教育厅科研基金项目(B2020050); 武汉工程大学研究生教育创新基金项目(CX2022096)

The motion law of oil droplets and bubbles in air flotation-cyclone

Wei WANG1,2(), Xu BAI1,2, Xiaodan CHU3, Xiang ZHAO1,2, Xueliang MA1,2, Wei LIN1,2(), Cheng GONG1,2, Jiuyang YU1,2   

  1. 1. College of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430010, China
    2. Hubei Green Chemical Equipment Engineering Technology Research Center, Wuhan 430010, China
    3. Shale Gas Exploitation Technology Service Company, Sinopec Jianghan Petroleum Engineering Co. , Ltd. , Wuhan 430010, China
  • Received:2024-10-17 Online:2025-01-20 Published:2025-01-22

摘要:

微气泡气浮旋流技术是将气浮分离与旋流分离相结合的一种新型高效分离方法。利用微气泡气浮旋流技术进行油水分离,探究了溶气水微气泡、旋流场、絮凝剂3种因素对油水分离效果的影响,并用高速成像技术考察了微气泡与油滴、微气泡与絮体的结合过程。结果表明,溶气水微气泡可大幅缩短油水分离时间,相比纯水静置缩短了50%。在油水混合物初始质量浓度为400 mg/L时,气浮+旋流+絮凝剂组合工艺的最佳实验条件为油水混合物与溶气水的体积比1∶4、旋流速度370 r/min、复合絮凝剂(PAC∶CPAM)的复配比2∶1,此条件下污水最终含油质量浓度低于10 mg/L,满足《污水综合排放标准》(GB 8978—1996)。静水条件下,微气泡-絮体结合体的平均投影面积约为微气泡-油滴结合体的6倍,投加絮凝剂有利于提升油水分离效果。交互实验证明,相比纯水静置处理,经微气泡气浮、气浮+旋流以及气浮+旋流+絮凝剂3种工艺处理后,污水含油率分别降低38.7%、71.4%、76.5%。就最终油水分离效果来说,3因素组合>溶气水微气泡+旋流场>溶气水微气泡。

关键词: 微气泡, 气浮旋流工艺, 油田采出水, 油水分离

Abstract:

Microbubble air flotation cyclone technology is an innovative and efficient separation method combining flotation separation and cyclone separation. Using this technology for oil-water separation, the effects of dissolved gas water microbubbles, cyclone fields, and flocculants on separation efficiency were investigated. High-speed imaging technology was utilized to study the interaction between microbubbles and oil droplets, as well as between microbubbles and flocs. The results showed that dissolved gas water microbubbles significantly reduced oil-water separation time, cutting it by 50% compared to static settling in pure water. At an initial oil-water mixture concentration of 400 mg/L, the optimal experimental conditions for the combined flotation+cyclone+flocculant process were: Oil-water mixture to dissolved gas water volume ratio of 1∶4, cyclone velocity of 370 r/min, composite flocculant ratio (PAC∶CPAM) of 2∶1. Under these conditions, the final oil concentration in wastewater was less than 10 mg/L, meeting the requirements of the Integrated Wastewater Discharge Standard (GB 8978-1996). In static water conditions, the average projected area of microbubble-floc aggregates was approximately six times that of microbubble-oil droplet aggregates, indicating that the addition of flocculants was conducive for improving oil-water separation. Interaction experiments demonstrated that, compared to pure water static settling, oil content in wastewater decreased by 38.7%, 71.4%, and 76.5% after treatment using microbubble air flotation, flotation+cyclone, and flotation+cyclone+flocculants, respectively. The final oil-water separation effectiveness was in order of three-factor combination>dissolved gas water microbubbles +cyclone field>dissolved gas water microbubbles alone.

Key words: micro-bubbles, air flotation-cyclone process, oilfield produced water, oil-water separation

中图分类号: