工业水处理 ›› 2021, Vol. 41 ›› Issue (7): 77-81. doi: 10.19965/j.cnki.iwt.2020-1140

• 试验研究 • 上一篇    下一篇

UASB处理高硫酸盐废水及人工神经网络模型的构建

王庆宏(),余静诗,梁家豪,陈春茂*()   

  1. 中国石油大学(北京)化学工程与环境学院, 重质油国家重点实验室, 北京 102249
  • 收稿日期:2021-02-28 出版日期:2021-07-20 发布日期:2021-07-26
  • 通讯作者: 陈春茂 E-mail:wangqhqh@163.com;c.chen@cup.edu.cn
  • 作者简介:王庆宏(1984-), 博士, 副教授, 博士生导师。E-mail: wangqhqh@163.com
  • 基金资助:
    中国石油大学(北京)科研基金资助(2462018BJB001)

Treatment of sulfate-rich wastewater by UASB and construction of artificial neural network model

Qinghong Wang(),Jingshi Yu,Jiahao Liang,Chunmao Chen*()   

  1. State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
  • Received:2021-02-28 Online:2021-07-20 Published:2021-07-26
  • Contact: Chunmao Chen E-mail:wangqhqh@163.com;c.chen@cup.edu.cn

摘要:

采用UASB处理高硫酸盐废水,对不同碳硫比〔m(COD)/m(SO42-)=1、2、3、4.6〕条件下反应体系的处理效能进行评估,并利用神经网络模型分析不同因素对COD去除率和SO42-去除率的影响。结果表明SO42-去除率与m(COD)/m(SO42-)成正比,而COD去除率则与m(COD)/m(SO42-)成反比。当m(COD)/m(SO42-)为4.6时,SO42-平均去除率达98.1%,此时,COD平均去除率仅为32.2%。神经网络模型的影响因素权重分析表明进水pH、COD和m(COD)/m(SO42-)为影响COD去除的主要因素,进水COD、SO42-浓度和m(COD)/m(SO42-)为影响SO42-去除的主要因素。

关键词: 高硫酸盐废水, 厌氧处理, 神经网络

Abstract:

Sulfate-rich wastewater was treated by UASB. The performance of the reaction system under the condition of different COD/sulfate ratios[m(COD)/m(SO42-)=1, 2, 3, 4.6] was studied, and the neural network model was used to analyze the influence of different factors on COD and SO42- removal efficiency. The results showed that the removal rate of SO42- was proportional to the m(COD)/m(SO42-) and the removal rate of COD was inversely proportional to the m(COD)/m(SO42-). When m(COD)/m(SO42-) was 4.6, the average removal rate of SO42- could reach up to 98.1%, but that of COD was only 32.2%. The weight analysis of influencing factors of neural network model shows that the influent pH, COD and m(COD)/m(SO42-) were the main parameters that affect COD removal, and the influent COD, SO42- concentration and m(COD)/m(SO42-) were the main parameters that affect SO42- removal.

Key words: sulfate-rich wastewater, anaerobic biological treatment, neural network

中图分类号: