1 |
Huang Cong , Liu Qian , Chen Chuan , et al. Elemental sulfur recovery and spatial distribution of functional bacteria and expressed genes under different carbon/nitrate/sulfide loadings in up-flow anaerobic sludge blanket reactors[J]. Journal of Hazardous Materials, 2017, 324, 48- 53.
doi: 10.1016/j.jhazmat.2016.03.024
|
2 |
Choi E , Rim J M . Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment[J]. Water Science and Technology, 1991, 23, 7- 9.
URL
|
3 |
Katsuji U , Keiko K , Kenji I , et al. Potential availability of anaerobic treatment with digester slurry of animal waste for the reclamation of acid mine water containing sulfate and heavy metals[J]. Journal of Fermentation Technology, 1988, 66 (1): 43- 50.
doi: 10.1016/0385-6380(88)90128-8
|
4 |
Lu Xueqin , Zhen Guangyin , Ni Jialing , et al. Effect of influent COD/SO42- ratios on biodegradation behaviors of starch wastewater in an up-flow anaerobic sludge blanket(UASB) reactor[J]. Bioresource Technology, 2016, 214, 175- 183.
doi: 10.1016/j.biortech.2016.04.100
|
5 |
Liang Jiahao , Wang Qinghong , Li Q X , et al. Aerobic sludge granulation in shale gas flowback water treatment: Assessment of the bacterial community dynamics and modeling of bioreactor performance using artificial neural network[J]. Bioresource Technology, 2020, 313, 123687.
doi: 10.1016/j.biortech.2020.123687
|
6 |
Nair V V , Dhar H , Kumar S , et al. Artificial neural network based modeling to evaluate methane yield from biogas in a laboratory-scale anaerobic bioreactor[J]. Bioresource Technology, 2016, 217, 90- 99.
doi: 10.1016/j.biortech.2016.03.046
|
7 |
Basu B , Singh M P , Kapur G S , et al. Prediction of biodegradability of mineral base oils from chemical composition using artificial neural networks[J]. Tribology International, 1998, 31 (4): 159- 168.
doi: 10.1016/S0301-679X(97)00078-9
|
8 |
国家环境保护总局. 水和废水监测分析方法[M]. 4版 北京: 中国环境科学出版社, 2005: 31- 57.
|
9 |
Zhou Jiemin , Xing Jianmin , et al. Effect of electron donors on the performance of haloalkaliphilic sulfate-reducing bioreactors for flue gas treatment and microbial degradation patterns related to sulfate reduction of different electron donors[J]. Biochemical Engineering Journal, 2015, 96, 14- 22.
doi: 10.1016/j.bej.2014.12.015
|
10 |
Sabumon P C . Development of enhanced sulphidogenesis process for the treatment of wastewater having low COD/SO42- ratio[J]. Journal of Hazardous Materials, 2008, 159 (2/3): 616- 625.
|
11 |
Hu Yong , Jing Zhaoqian , Sudo Y , et al. Effect of influent COD/SO42- ratios on UASB treatment of a synthetic sulfate-containing waste-water[J]. Chemosphere, 2015, 130, 24- 33.
doi: 10.1016/j.chemosphere.2015.02.019
|
12 |
Cheng Jun , Wang Xin , Si Tingting , et al. Ignition temperature and activation energy of power coal blends predicted with back-propagation neural network models[J]. Fuel, 2016, 173, 230- 238.
doi: 10.1016/j.fuel.2016.01.043
|
13 |
Philip A , Jian Z L , Portia O B , et al. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network[J]. Bioresource Technology, 2017, 228, 106- 115.
doi: 10.1016/j.biortech.2016.12.045
|
14 |
Arindam S , Divya B , Kannan P . Process integration and artificial neural network modeling of biological sulfate reduction using a carbon monoxide fed gas lift bioreactor[J]. Chemical Engineering Journal, 2020, 391, 123518.
doi: 10.1016/j.cej.2019.123518
|
15 |
王爱杰, 任南琪, 甄卫东, 等. 硫酸盐还原过程中SRB的限制性生态因子的BP神经网络建模与仿真[J]. 环境科学学报, 2001, 21 (3): 267- 270.
doi: 10.3321/j.issn:0253-2468.2001.03.003
|
16 |
Reyes-Alvarado L C , Okpalanze N N , Kankanala D , et al. Forecasting the effect of feast and famine conditions on biological sulphate reduction in an anaerobic inverse fluidized bed reactor using artificial neural networks[J]. Process Biochemistry, 2017, 55, 146- 161.
doi: 10.1016/j.procbio.2017.01.021
|