| 1 | 
																						 
											  MARTINS G,   SALVADOR A F,   PEREIRA L,et al. Methane production and conductive materials:A critical review[J].  Environmental Science & Technology, 2018, 52(18):10241-10253. doi: 10.1021/acs.est.8b01913 
											 											 | 
										
																													
																						| 2 | 
																						 
											  CHENG Qiwen,   CALL D F. Hardwiring microbes via direct interspecies electron transfer:Mechanisms and applications[J].  Environmental Science:Processes & Impacts, 2016, 18(8):968-980. doi: 10.1039/c6em00219f 
											 											 | 
										
																													
																						| 3 | 
																						 
											  CRUZ VIGGI C,   ROSSETTI S,   FAZI S,et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J].  Environmental Science & Technology, 2014, 48(13):7536-7543. doi: 10.1021/es5016789 
											 											 | 
										
																													
																						| 4 | 
																						 
											  WANG Dexin,   HAN Yuxing,   HAN Hongjun,et al. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite[J].  Bioresource Technology, 2018, 257:147-156. doi: 10.1016/j.biortech.2018.02.084 
											 											 | 
										
																													
																						| 5 | 
																						 
											  YANG Yafei,   ZHANG Yaobin,   LI Zeyu,et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition[J].  Journal of Cleaner Production, 2017, 149:1101-1108. doi: 10.1016/j.jclepro.2017.02.156 
											 											 | 
										
																													
																						| 6 | 
																						 
											  SUN Tianran,   LEVIN B D A,   GUZMAN J J L,et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J].  Nature Communications, 2017, 8:14873. doi: 10.1038/ncomms14873 
											 											 | 
										
																													
																						| 7 | 
																						 
											  LI Qian,   GAO Xin,   LIU Yaqian,et al. Biochar and GAC intensify anaerobic phenol degradation via distinctive adsorption and conductive properties[J].  Journal of Hazardous Materials, 2021, 405:124183. doi: 10.1016/j.jhazmat.2020.124183 
											 											 | 
										
																													
																						| 8 | 
																						 
											  XU Yanguang,   WANG Mingwei,   YU Qilin,et al. Enhancing methanogenesis from anaerobic digestion of propionate with addition of Fe oxides supported on conductive carbon cloth[J].  Bioresource Technology, 2020, 302:122796. doi: 10.1016/j.biortech.2020.122796 
											 											 | 
										
																													
																						| 9 | 
																						 
											  YE Jie,   HU Andong,   REN Guoping,et al. Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud[J].  Water Research, 2018, 134:54-62. doi: 10.1016/j.watres.2018.01.062 
											 											 | 
										
																													
																						| 10 | 
																						 
											  LI Shiyang,   CAO Yi,   ZHAO Zhiqiang,et al. Regulating secretion of extracellular polymeric substances through dosing magnetite and zerovalent iron nanoparticles to affect anaerobic digestion mode[J].  ACS Sustainable Chemistry & Engineering, 2019, 7(10):9655-9662. doi: 10.1021/acssuschemeng.9b01252 
											 											 | 
										
																													
																						| 11 | 
																						 
											  ZHAI Shimin,   LI Min,   XIONG Yonghui,et al. Dual resource utilization for tannery sludge:Effects of sludge biochars(BCs) on volatile fatty acids(VFAs) production from sludge anaerobic digestion[J].  Bioresource Technology, 2020, 316:123903. doi: 10.1016/j.biortech.2020.123903 
											 											 | 
										
																													
																						| 12 | 
																						 
											  PARK J H,   PARK J H,   SEONG H J,et al. Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon[J].  Bioresource Technology, 2018, 259:414-422. doi: 10.1016/j.biortech.2018.03.050 
											 											 | 
										
																													
																						| 13 | 
																						 
											  MA Jiaying,   WEI Huawei,   SU Yinglong,et al. Powdered activated carbon facilitates methane productivity of anaerobic co-digestion via acidification alleviating:Microbial and metabolic insights[J].  Bioresource Technology, 2020, 313:123706. doi: 10.1016/j.biortech.2020.123706 
											 											 | 
										
																													
																						| 14 | 
																						 
											 
											 											 | 
										
																													
																						| 15 | 
																						 
											  ZHAO Zhiqiang,   LI Yang,   ZHANG Yaobin,et al. Sparking anaerobic digestion:Promoting direct interspecies electron transfer to enhance methane production[J].  Iscience, 2020, 23(12):101794. doi: 10.1016/j.isci.2020.101794 
											 											 | 
										
																													
																						| 16 | 
																						 
											  SU Chengyuan,   TAO Afeng,   ZHAO Lijian,et al. Roles of modified biochar in the performance,sludge characteristics,and microbial community features of anaerobic reactor for treatment food waste[J].  Science of the Total Environment, 2021, 770:144668. doi: 10.1016/j.scitotenv.2020.144668 
											 											 | 
										
																													
																						| 17 | 
																						 
											  JIANG Qian,   LIU He,   ZHANG Yan,et al. Insight into sludge anaerobic digestion with granular activated carbon addition:Methanogenic acceleration and methane reduction relief[J].  Bioresource Technology, 2021, 319:124131. doi: 10.1016/j.biortech.2020.124131 
											 											 | 
										
																													
																						| 18 | 
																						 
											  WAN Hongyou,   WANG Fuzhen,   CHEN Yuhan,et al. Enhanced reactive red 2 anaerobic degradation through improving electron transfer efficiency by nano-Fe 3O 4 modified granular activated carbon[J].  Renewable Energy, 2021, 179:696-704. doi: 10.1016/j.renene.2021.07.046 
											 											 | 
										
																													
																						| 19 | 
																						 
											  FAGBOHUNGBE M O,   HERBERT B M J,   HURST L,et al. Impact of biochar on the anaerobic digestion of citrus peel waste[J].  Bioresource Technology, 2016, 216:142-149. doi: 10.1016/j.biortech.2016.04.106 
											 											 | 
										
																													
																						| 20 | 
																						 
											  Fan LÜ,   LIU Yang,   SHAO Liming,et al. Powdered biochar doubled microbial growth in anaerobic digestion of oil[J].  Applied Energy, 2019, 247:605-614. doi: 10.1016/j.apenergy.2019.04.052 
											 											 | 
										
																													
																						| 21 | 
																						 
											  FUJINAWA K,   NAGOYA M,   KOUZUMA A,et al. Conductive carbon nanoparticles inhibit methanogens and stabilize hydrogen production in microbial electrolysis cells[J].  Applied Microbiology and Biotechnology, 2019, 103(15):6385-6392. doi: 10.1007/s00253-019-09946-1 
											 											 | 
										
																													
																						| 22 | 
																						 
											  ZENG Shengquan,   HARRIS R,   KAN E. Effect of alfalfa-derived biochar on anaerobic digestion of dairy manure[J].  Agronomy, 2022, 12(4):911. doi: 10.3390/agronomy12040911 
											 											 | 
										
																													
																						| 23 | 
																						 
											  PAN Junting,   MA Junyi,   ZHAI Limei,et al. Achievements of biochar application for enhanced anaerobic digestion:A review[J].  Bioresource Technology, 2019, 292:122058. doi: 10.1016/j.biortech.2019.122058 
											 											 | 
										
																													
																						| 24 | 
																						 
											  KANG Xiaorong,   LIU Yali. Performance and mechanism of conductive magnetite particle-enhanced excess sludge anaerobic digestion for biogas recovery[J].  RSC Advances, 2021, 11(56):35559-35566. doi: 10.1039/d1ra06236k 
											 											 | 
										
																													
																						| 25 | 
																						 
											  BUENO-LÓPEZ J I,   RANGEL-MENDEZ J R,   ALATRISTE-MONDRAGÓN F,et al. Graphene oxide triggers mass transfer limitations on the methanogenic activity of an anaerobic consortium with a particulate substrate[J].  Chemosphere, 2018, 211:709-716. doi: 10.1016/j.chemosphere.2018.08.001 
											 											 | 
										
																													
																						| 26 | 
																						 
											  Honghong LÜ,   HE Yuhe,   TANG Jingchun,et al. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment[J].  Environmental Pollution, 2016, 218:1-7. doi: 10.1016/j.envpol.2016.08.014 
											 											 | 
										
																													
																						| 27 | 
																						 
											  QIN Yong,   WANG Haoshu,   LI Xiangru,et al. Improving methane yield from organic fraction of municipal solid waste(OFMSW) with magnetic rice-straw biochar[J].  Bioresource Technology, 2017, 245:1058-1066. doi: 10.1016/j.biortech.2017.09.047 
											 											 | 
										
																													
																						| 28 | 
																						 
											  LIU Haoyu,   XU Ying,   LI Lei,et al. A review on application of single and composite conductive additives for anaerobic digestion:Advances,challenges and prospects[J].  Resources,Conservation and Recycling, 2021, 174:105844. doi: 10.1016/j.resconrec.2021.105844 
											 											 | 
										
																													
																						| 29 | 
																						 
											 
											 											 | 
										
																													
																						 | 
																						 
											  PU Shengyan,   HE Lingling,   LIU Shibin. Review on the preparation of biochar composites and its applications in wastewater treatment[J].  Industrial Water Treatment, 2019, 39(9):1-7. doi: 10.11894/iwt.2019-0390 
											 											 | 
										
																													
																						| 30 | 
																						 
											  YANG Zhiman,   GUO Rongbo,   DONG Xiaohuan. Promoting biomethane production from propionate with Fe 2O 3@carbon nanotubes composites[J].  Science of the Total Environment, 2022, 818:151762. doi: 10.1016/j.scitotenv.2021.151762 
											 											 | 
										
																													
																						| 31 | 
																						 
											  ZHUANG Haifeng,   ZHU Hao,   ZHANG Jin,et al. Enhanced 2,4,6-trichlorophenol anaerobic degradation by Fe 3O 4 supported on water hyacinth biochar for triggering direct interspecies electron transfer and its use in coal gasification wastewater treatment[J].  Bioresource Technology, 2020, 296:122306. doi: 10.1016/j.biortech.2019.122306 
											 											 | 
										
																													
																						| 32 | 
																						 
											  WAMBUGU C W,   RENE E R,   VAN DE VOSSENBERG J,et al. Role of biochar in anaerobic digestion based biorefinery for food waste[J].  Frontiers in Energy Research, 2019, 7:14. doi: 10.3389/fenrg.2019.00014 
											 											 | 
										
																													
																						| 33 | 
																						 
											  ZHU Hao,   HAN Yuxing,   MA Wencheng,et al. New insights into enhanced anaerobic degradation of coal gasification wastewater(CGW) with the assistance of graphene[J].  Bioresource Technology, 2018, 262:302-309. doi: 10.1016/j.biortech.2018.04.080 
											 											 | 
										
																													
																						| 34 | 
																						 
											  LOGAN M,   TAN L C,   NZETEU C O,et al. Enhanced anaerobic digestion of dairy wastewater in a granular activated carbon amended sequential batch reactor[J].  GCB Bioenergy, 2022, 14(7):840-857. doi: 10.1111/gcbb.12947 
											 											 | 
										
																													
																						| 35 | 
																						 
											  DANG Hongyu,   YU N,   MOU Anqi,et al. Metagenomic insights into direct interspecies electron transfer and quorum sensing in blackwater anaerobic digestion reactors supplemented with granular activated carbon[J].  Bioresource Technology, 2022, 352:127113. doi: 10.1016/j.biortech.2022.127113 
											 											 | 
										
																													
																						| 36 | 
																						 
											  WU Nan,   LIU Tao,   LI Qian,et al. Enhancing anaerobic methane production in integrated floating-film activated sludge system filled with novel MWCNTs-modified carriers[J].  Chemosphere, 2022, 299:134483. doi: 10.1016/j.chemosphere.2022.134483 
											 											 | 
										
																													
																						| 37 | 
																						 
											  CHEN Qian,   LIU Chuanqi,   LIU Xinying,et al. Magnetite enhances anaerobic digestion of high salinity organic wastewater[J].  Environmental Research, 2020, 189:109884. doi: 10.1016/j.envres.2020.109884 
											 											 | 
										
																													
																						| 38 | 
																						 
											  ZHONG Dan,   LI Jinxin,   MA Wencheng,et al. Clarifying the synergetic effect of magnetite nanoparticles in the methane production process[J].  Environmental Science and Pollution Research, 2020, 27(14):17054-17062. doi: 10.1007/s11356-020-07828-y 
											 											 | 
										
																													
																						| 39 | 
																						 
											  YIN Qidong,   HE Kai,   LIU Aike,et al. Enhanced system performance by dosing ferroferric oxide during the anaerobic treatment of tryptone-based high-strength wastewater[J].  Applied Microbiology and Biotechnology, 2017, 101(9):3929-3939. doi: 10.1007/s00253-017-8194-8 
											 											 | 
										
																													
																						| 40 | 
																						 
											  JIN Zhen,   ZHAO Zhiqiang,   ZHANG Yaobin. Potential of direct interspecies electron transfer in synergetic enhancement of methanogenesis and sulfate removal in an up-flow anaerobic sludge blanket reactor with magnetite[J].  Science of the Total Environment, 2019, 677:299-306. doi: 10.1016/j.scitotenv.2019.04.372 
											 											 | 
										
																													
																						| 41 | 
																						 
											  SUN Muchen,   ZHANG Zhaohan,   LIU Guohong,et al. Enhancing methane production of synthetic brewery water with granular activated carbon modified with nanoscale zero-valent iron(nZVI) in anaerobic system[J].  Science of the Total Environment, 2021, 760:143933. doi: 10.1016/j.scitotenv.2020.143933 
											 											 | 
										
																													
																						| 42 | 
																						 
											  HU Yong,   SHI Chen,   MA Haiyuan,et al. Biofilm formation enhancement in anaerobic treatment of high salinity wastewater:Effect of biochar/Fe addition[J].  Journal of Environmental Chemical Engineering, 2021, 9(4):105603. doi: 10.1016/j.jece.2021.105603 
											 											 | 
										
																													
																						| 43 | 
																						 
											  ZHANG Guangyi,   SHI Yinghao,   ZHAO Zisheng,et al. Enhanced two-phase anaerobic digestion of waste-activated sludge by combining magnetite and zero-valent iron[J].  Bioresource Technology, 2020, 306:123122. doi: 10.1016/j.biortech.2020.123122 
											 											 | 
										
																													
																						| 44 | 
																						 
											  庄海峰,唐浩杰,单胜道,等. 纳米Fe3O4强化厌氧活性污泥降解偶氮染料废水[J]. 工业水处理,2019,39(12):41-44. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHUANG Haifeng,  TANG Haojie,  SHAN Shengdao,et al. Degradation performance of azo dye wastewater by Fe3O4 nanoparticles-enhanced anaerobic activated sludge[J]. Industrial Water Treatment,2019,39(12):41-44. 
											 											 | 
										
																													
																						| 45 | 
																						 
											  ZHANG Zhaohan,   GAO Peng,   CHENG Jiaqi,et al. Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/nZVI mediator[J].  Water Research, 2018, 136:54-63. doi: 10.1016/j.watres.2018.02.025 
											 											 | 
										
																													
																						| 46 | 
																						 
											  CHENG Dongle,   NGO H H,   GUO Wenshan,et al. Improving sulfonamide antibiotics removal from swine wastewater by supplying a new pomelo peel derived biochar in an anaerobic membrane bioreactor[J].  Bioresource Technology, 2021, 319:124160. doi: 10.1016/j.biortech.2020.124160 
											 											 | 
										
																													
																						| 47 | 
																						 
											  ZIGANSHINA E E,   BULYNINA S S,   ZIGANSHIN A M. Impact of granular activated carbon on anaerobic process and microbial community structure during mesophilic and thermophilic anaerobic digestion of chicken manure[J].  Sustainability, 2022, 14(1):447. doi: 10.3390/su14010447 
											 											 | 
										
																													
																						| 48 | 
																						 
											  ZHANG Junya,   LU Tiedong,   WANG Ziyue,et al. Effects of magnetite on anaerobic digestion of swine manure:Attention to methane production and fate of antibiotic resistance genes[J].  Bioresource Technology, 2019, 291:121847. doi: 10.1016/j.biortech.2019.121847 
											 											 | 
										
																													
																						| 49 | 
																						 
											  LIM E Y,   LEE J T E,   ZHANG Le,et al. Abrogating the inhibitory effects of volatile fatty acids and ammonia in overloaded food waste anaerobic digesters via the supplementation of nano-zero valent iron modified biochar[J].  Science of the Total Environment, 2022, 817:152968. doi: 10.1016/j.scitotenv.2022.152968 
											 											 | 
										
																													
																						| 50 | 
																						 
											  ZHAO Zhiqiang,   LI Yang,   QUAN Xie,et al. Towards engineering application:Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J].  Water Research, 2017, 115:266-277. doi: 10.1016/j.watres.2017.02.067 
											 											 | 
										
																													
																						| 51 | 
																						 
											  DUAN Xu,   CHEN Yunzhi,   YAN Yuanyuan,et al. New method for algae comprehensive utilization:Algae-derived biochar enhances algae anaerobic fermentation for short-chain fatty acids production[J].  Bioresource Technology, 2019, 289:121637. doi: 10.1016/j.biortech.2019.121637 
											 											 | 
										
																													
																						| 52 | 
																						 
											  ZHAO Zisheng,   LI Yang,   ZHAO Zhiqiang,et al. Effects of dissimilatory iron reduction on acetate production from the anaerobic fermentation of waste activated sludge under alkaline conditions[J].  Environmental Research, 2020, 182:109045. doi: 10.1016/j.envres.2019.109045 
											 											 | 
										
																													
																						| 53 | 
																						 
											  PARITOSH K,   MATHUR S,   PAREEK N,et al. Enhancing hydrolysis and syntropy simultaneously in solid state anaerobic digestion:Digester performance and techno-economic evaluation[J].  Bioresource Technology, 2021, 338:125538. doi: 10.1016/j.biortech.2021.125538 
											 											 | 
										
																													
																						| 54 | 
																						 
											  WANG Chen,   LIU Jieyi,   XU Xiangyang,et al. Response of methanogenic granules enhanced by magnetite to ammonia stress[J].  Water Research, 2022, 212:118123. doi: 10.1016/j.watres.2022.118123 
											 											 | 
										
																													
																						| 55 | 
																						 
											  ZHANG Yingdi,   ZHANG Lei,   YU N,et al. Enhancing the resistance to H 2S toxicity during anaerobic digestion of low-strength wastewater through granular activated carbon(GAC) addition[J].  Journal of Hazardous Materials, 2022, 430:128473. doi: 10.1016/j.jhazmat.2022.128473 
											 											 | 
										
																													
																						| 56 | 
																						 
											  TAN L C,   LIN Richen,   MURPHY J,et al. Granular activated carbon supplementation enhances anaerobic digestion of lipid-rich wastewaters[J].  Renewable Energy, 2021, 171:958-970. doi: 10.1016/j.renene.2021.02.087 
											 											 | 
										
																													
																						| 57 | 
																						 
											  LI Pengcheng,   LIU Ziyi,   ZHAO Mingxing,et al. Enhanced methane generation from anaerobic tridigestion of organic solid wastes by direct interspecies electron transfer stimulation[J].  ACS Sustainable Chemistry & Engineering, 2021, 9(36):12323-12331. doi: 10.1021/acssuschemeng.1c04027 
											 											 | 
										
																													
																						| 58 | 
																						 
											  WANG Gaojun,   LI Qian,   GAO Xin,et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar:Performance and associated mechanisms[J].  Bioresource Technology, 2018, 250:812-820. doi: 10.1016/j.biortech.2017.12.004 
											 											 | 
										
																													
																						| 59 | 
																						 
											  XU Suyun,   HAN Runqi,   ZHANG Yuchen,et al. Differentiated stimulating effects of activated carbon on methanogenic degradation of acetate,propionate and butyrate[J].  Waste Management, 2018, 76:394-403. doi: 10.1016/j.wasman.2018.03.037 
											 											 | 
										
																													
																						| 60 | 
																						 
											  LEE S H,   KANG H J,   LIM T G,et al. Magnetite and granular activated carbon improve methanogenesis via different metabolic routes[J].  Fuel, 2020, 281:118768. doi: 10.1016/j.fuel.2020.118768 
											 											 | 
										
																													
																						| 61 | 
																						 
											  XIE Sihuang,   LI Xuan,   WANG Chengduan,et al. Enhanced anaerobic digestion of primary sludge with additives:Performance and mechanisms[J].  Bioresource Technology, 2020, 316:123970. doi: 10.1016/j.biortech.2020.123970 
											 											 | 
										
																													
																						| 62 | 
																						 
											  KUTLAR F E,   TUNCA B,   YILMAZEL Y D. Carbon-based conductive materials enhance biomethane recovery from organic wastes:A review of the impacts on anaerobic treatment[J].  Chemosphere, 2022, 290:133247. doi: 10.1016/j.chemosphere.2021.133247 
											 											 | 
										
																													
																						| 63 | 
																						 
											  PARK J H,   KANG H J,   PARK K H,et al. Direct interspecies electron transfer via conductive materials:A perspective for anaerobic digestion applications[J].  Bioresource Technology, 2018, 254:300-311. doi: 10.1016/j.biortech.2018.01.095 
											 											 | 
										
																													
																						| 64 | 
																						 
											  CHEN Le,   FANG Wei,   CHANG Jianning,et al. Improvement of direct interspecies electron transfer via adding conductive materials in anaerobic digestion:Mechanisms,performances,and challenges[J].  Frontiers in Microbiology, 2022, 13:860749. doi: 10.3389/fmicb.2022.860749 
											 											 | 
										
																													
																						| 65 | 
																						 
											  LIU Fanghua,   ROTARU A E,   SHRESTHA P M,et al. Promoting direct interspecies electron transfer with activated carbon[J].  Energy & Environmental Science, 2012, 5(10):8982-8989. doi: 10.1039/c2ee22459c 
											 											 | 
										
																													
																						| 66 | 
																						 
											  YUAN Haiyan,   DING Longjun,   ZAMA E F,et al. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate[J].  Environmental Science & Technology, 2018, 52(21):12198-12207. doi: 10.1021/acs.est.8b04121 
											 											 | 
										
																													
																						| 67 | 
																						 
											  CRUZ VIGGI C,   SIMONETTI S,   PALMA E,et al. Enhancing methane production from food waste fermentate using biochar:The added value of electrochemical testing in pre-selecting the most effective type of biochar[J].  Biotechnology for Biofuels, 2017, 10(1):1-13. doi: 10.1186/s13068-017-0994-7 
											 											 | 
										
																													
																						| 68 | 
																						 
											  WANG Caiqin,   WANG Chen,   JIN Luonan,et al. Response of syntrophic aggregates to the magnetite loss in continuous anaerobic bioreactor[J].  Water Research, 2019, 164:114925. doi: 10.1016/j.watres.2019.114925 
											 											 | 
										
																													
																						| 69 | 
																						 
											  Changjin OU,   SHEN Jinyou,   ZHANG Shuai,et al. Coupling of iron shavings into the anaerobic system for enhanced 2,4-dinitroanisole reduction in wastewater[J].  Water Research, 2016, 101:457-466. doi: 10.1016/j.watres.2016.06.002 
											 											 | 
										
																													
																						| 70 | 
																						 
											  ZHANG Le,   LIM E Y,LOH K,et al. Biochar enhanced thermophilic anaerobic digestion of food waste:Focusing on biochar particle size,microbial community analysis and pilot-scale application[J].  Energy Conversion and Management, 2020, 209:112654. doi: 10.1016/j.enconman.2020.112654 
											 											 | 
										
																													
																						| 71 | 
																						 
											  WANG Chen,   LIU Yang,   WANG Caiqin,et al. Biochar facilitates rapid restoration of methanogenesis by enhancing direct interspecies electron transfer after high organic loading shock[J].  Bioresource Technology, 2021, 320:124360. doi: 10.1016/j.biortech.2020.124360 
											 											 | 
										
																													
																						| 72 | 
																						 
											  LI Qian,   XU Manjuan,   WANG Gaojun,et al. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment[J].  Bioresource Technology, 2018, 249:1009-1016. doi: 10.1016/j.biortech.2017.11.002 
											 											 | 
										
																													
																						| 73 | 
																						 
											  SHEN Nan,   LIANG Zhu,   CHEN Yun,et al. Enhancement of syntrophic acetate oxidation pathway via single walled carbon nanotubes addition under high acetate concentration and thermophilic condition[J].  Bioresource Technology, 2020, 306:123182. doi: 10.1016/j.biortech.2020.123182 
											 											 | 
										
																													
																						| 74 | 
																						 
											  HUANG Junjie,   MA Ke,   XIA Xingxuan,et al. Biochar and magnetite promote methanogenesis during anaerobic decomposition of rice straw[J].  Soil Biology and Biochemistry, 2020, 143:107740. doi: 10.1016/j.soilbio.2020.107740 
											 											 | 
										
																													
																						| 75 | 
																						 
											  WANG Caiqin,   LIU Yang,   JIN Shuai,et al. Responsiveness extracellular electron transfer(EET) enhancement of anaerobic digestion system during start-up and starvation recovery stages via magnetite addition[J].  Bioresource Technology, 2019, 272:162-170. doi: 10.1016/j.biortech.2018.10.013 
											 											 | 
										
																													
																						| 76 | 
																						 
											  LEI Yuqing,   WEI Lianxue,   LIU Tianyuan,et al. Magnetite enhances anaerobic digestion and methanogenesis of fresh leachate from a municipal solid waste incineration plant[J].  Chemical Engineering Journal, 2018, 348:992-999. doi: 10.1016/j.cej.2018.05.060 
											 											 | 
										
																													
																						| 77 | 
																						 
											  HOLMES D,   SHRESTHA P,   WALKER D,et al. Metatranscriptomic evidence for direct interspecies electron transfer between geobacter and methanothrix species in methanogenic rice paddy soils[J].  Applied and Environmental Microbiology, 2017, 83(9). DOI: 10.1128/aem.00223-17 .  
											 											 | 
										
																													
																						| 78 | 
																						 
											  DANG Yan,   SUN Dezhi,   WOODARD T L,et al. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste(OFMSW) with carbon-based conductive materials[J].  Bioresource Technology, 2017, 238:30-38. doi: 10.1016/j.biortech.2017.04.021 
											 											 | 
										
																													
																						| 79 | 
																						 
											  YAN Wangwang,   SHEN Nan,   XIAO Yeyuan,et al. The role of conductive materials in the start-up period of thermophilic anaerobic system[J].  Bioresource Technology, 2017, 239:336-344. doi: 10.1016/j.biortech.2017.05.046 
											 											 | 
										
																													
																						| 80 | 
																						 
											  CHENG Jun,   LI Hui,   DING Lingkan,et al. Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion:The effect of magnetite nanoparticles on microbial electron transfer and syntrophism[J].  Chemical Engineering Journal, 2020, 397:125394. doi: 10.1016/j.cej.2020.125394 
											 											 | 
										
																													
																						| 81 | 
																						 
											  CHEN Shengjie,   TAO Ziletao,   YAO Fubing,et al. Enhanced anaerobic co-digestion of waste activated sludge and food waste by sulfidated microscale zerovalent iron:Insights in direct interspecies electron transfer mechanism[J].  Bioresource Technology, 2020, 316:123901. doi: 10.1016/j.biortech.2020.123901 
											 											 | 
										
																													
																						| 82 | 
																						 
											  YAN Wangwang,   SUN Faqian,   LIU Jianbo,et al. Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration[J].  Chemical Engineering Journal, 2018, 352:1-9. doi: 10.1016/j.cej.2018.06.187 
											 											 | 
										
																													
																						| 83 | 
																						 
											  CHEN Jiaqi,   ZHANG Pengshuai,   ZHANG Jingxin,et al. Micro-nano magnetite-loaded biochar enhances interspecies electron transfer and viability of functional microorganisms in anaerobic digestion[J].  ACS Sustainable Chemistry & Engineering, 2022, 10(8):2811-2821. doi: 10.1021/acssuschemeng.1c08288 
											 											 |