1 |
TAN Bihui, FANG Yu, CHEN Qianlin,et al. Construction of Bi 2O 2CO 3/Ti 3C 2 heterojunctions for enhancing the visible-light photocatalytic activity of tetracycline degradation[J]. Journal of Colloid and Interface Science, 2021, 601:581-593. doi: 10.1016/j.jcis.2021.05.155
|
2 |
CHEN Guanyi, YU Yang, LIANG Lan,et al. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system:A critical review[J]. Journal of Hazardous Materials, 2021, 408:124461. doi: 10.1016/j.jhazmat.2020.124461
|
3 |
SHI Weilong, GUO Feng, YUAN Songliu. In situ synthesis of Z-scheme Ag 3PO 4/CuBi 2O 4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation[J]. Applied Catalysis B:Environmental, 2017, 209:720-728. doi: 10.1016/j.apcatb.2017.03.048
|
4 |
LUO Jin, NING Xiaomei, ZHAN Liang,et al. Facile construction of a fascinating Z-scheme AgI/Zn 3V 2O 8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation[J]. Separation and Purification Technology, 2021, 255:117691. doi: 10.1016/j.seppur.2020.117691
|
5 |
ZHOU Chengyun, HUANG Danlian, XU Piao,et al. Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer[J]. Chemical Engineering Journal, 2019, 370:1077-1086. doi: 10.1016/j.cej.2019.03.279
|
6 |
DENG Fang, ZHAO Lina, LUO Xubiao,et al. Highly efficient visible-light photocatalytic performance of Ag/AgIn 5S 8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater[J]. Chemical Engineering Journal, 2018, 333:423-433. doi: 10.1016/j.cej.2017.09.022
|
7 |
GUO Feng, SHI Weilong, WANG Huibo,et al. Study on highly enhanced photocatalytic tetracycline degradation of type Ⅱ AgI/CuBi 2O 4 and Z-scheme AgBr/CuBi 2O 4 heterojunction photocatalysts[J]. Journal of Hazardous Materials, 2018, 349:111-118. doi: 10.1016/j.jhazmat.2018.01.042
|
8 |
JIN Xin, WANG Rui, JIN Pengkang,et al. How can accumulated organics and salts deteriorate the biological treatment unit in the printing and dyeing wastewater recycling system?[J]. Chemical Engineering Journal, 2021, 413:127528. doi: 10.1016/j.cej.2020.127528
|
9 |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38. doi: 10.1038/238037a0
|
10 |
FRANK S N, BARD A J. Semiconductor electrodes. Ⅱ. Electrochemistry at n-type titanium dioxide electrodes in acetonitrile solutions[J]. Journal of the American Chemical Society, 1975, 97(26):7427-7433. doi: 10.1021/ja00859a007
|
11 |
IKRAM M, RASHID M, HAIDER A,et al. A review of photocatalytic characterization,and environmental cleaning,of metal oxide nanostructured materials[J]. Sustainable Materials and Technologies, 2021, 30:e00343. doi: 10.1016/j.susmat.2021.e00343
|
12 |
VARMA K S, SHUKLA A D, TAYADE R J,et al. Photocatalytic performance and interaction mechanism of reverse micelle synthesized Cu-TiO 2 nanomaterials towards levofloxacin under visible LED light[J]. Photochemical & Photobiological Sciences, 2022, 21(1):77-89. doi: 10.1007/s43630-021-00141-8
|
13 |
QI Kezhen, CHENG Bei, YU Jiaguo,et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds, 2017, 727:792-820. doi: 10.1016/j.jallcom.2017.08.142
|
14 |
VAIANO V, MATARANGOLO M, MURCIA J J,et al. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J]. Applied Catalysis B:Environmental, 2018, 225:197-206. doi: 10.1016/j.apcatb.2017.11.075
|
15 |
MOHAMED R M, ISMAIL A A, KADI M W,et al. Fabrication of mesoporous PtO-ZnO nanocomposites with promoted photocatalytic performance for degradation of tetracycline[J]. ACS Omega, 2021, 6(9):6438-6447. doi: 10.1021/acsomega.1c00135
|
16 |
AYODHYA D, VEERABHADRAM G. A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection[J]. Materials Today Energy, 2018, 9:83-113. doi: 10.1016/j.mtener.2018.05.007
|
17 |
LEE G J, WU J J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications:A review[J]. Powder Technology, 2017, 318:8-22. doi: 10.1016/j.powtec.2017.05.022
|
18 |
SHARMA K, RAIZADA P, HASIJA V,et al. ZnS-based quantum dots as photocatalysts for water purification[J]. Journal of Water Process Engineering, 2021, 43:102217. doi: 10.1016/j.jwpe.2021.102217
|
19 |
POORNAPRAKASH B, CHALAPATHI U, KUMAR M,et al. Enhanced photocatalytic degradation and hydrogen evolution of ZnS nanoparticles by(Co,Er) co-doping[J]. Materials Letters, 2020, 273:127887. doi: 10.1016/j.matlet.2020.127887
|
20 |
LI Yanxia, FU Min, LU Peng,et al. Visible light photocatalytic abatement of tetracycline over unique Z-scheme ZnS/PI composites[J]. Applied Surface Science, 2022, 575:151798. doi: 10.1016/j.apsusc.2021.151798
|
21 |
LIAO Guangfu, FANG Jiasheng, LI Qing,et al. Ag-based nanocomposites:Synthesis and applications in catalysis[J]. Nanoscale, 2019, 11(15):7062-7096. doi: 10.1039/c9nr01408j
|
22 |
LI Gaiping, WANG Yuexiang, MAO Lanqun. Recent progress in highly efficient Ag-based visible-light photocatalysts[J]. RSC Advances, 2014, 4(96):53649-53661. doi: 10.1039/c4ra08044k
|
23 |
ZHANG Shuqu, ZHANG Zhifeng, LI Bing,et al. Hierarchical Ag 3PO 4@ZnIn 2S 4 nanoscoparium:An innovative Z-scheme photocatalyst for highly efficient and predictable tetracycline degradation[J]. Journal of Colloid and Interface Science, 2021, 586:708-718. doi: 10.1016/j.jcis.2020.10.140
|
24 |
WU Fan, ZHOU Feng, ZHU Zhenyu,et al. Enhanced photocatalytic activities of Ag 3PO 4/GO in tetracycline degradation[J]. Chemical Physics Letters, 2019, 724:90-95. doi: 10.1016/j.cplett.2019.03.058
|
25 |
GE Ming, LIU Wei, HU Xinrong,et al. Magnetically separable Ag/AgBr/NiFe 2O 4 composite as a highly efficient visible light plasmonic photocatalyst[J]. Journal of Physics and Chemistry of Solids, 2017, 109:1-8. doi: 10.1016/j.jpcs.2017.05.008
|
26 |
LIU Ying, KONG Jijie, YUAN Julong,et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag 2CO 3/BiVO 4 plasmonic heterojunction photocatalyst for tetracycline degradation[J]. Chemical Engineering Journal, 2018, 331:242-254. doi: 10.1016/j.cej.2017.08.114
|
27 |
LI Ruizhen, CHEN Hanyang, XIONG Jianrong,et al. A mini review on bismuth-based Z-scheme photocatalysts[J]. Materials, 2020, 13(22):5057. doi: 10.3390/ma13225057
|
28 |
LI Shijie, WANG Chunchun, LIU Yanping,et al. Photocatalytic degradation of tetracycline antibiotic by a novel Bi 2Sn 2O 7/Bi 2MoO 6 S-scheme heterojunction:Performance,mechanism insight and toxicity assessment[J]. Chemical Engineering Journal, 2022, 429:132519. doi: 10.1016/j.cej.2021.132519
|
29 |
KUMAR G, DUTTA R K. Sunlight mediated photo-Fenton degradation of tetracycline antibiotic and methylene blue dye in aqueous medium using FeWO 4/Bi 2MoO 6 nanocomposite[J]. Process Safety and Environmental Protection, 2022, 159:862-873. doi: 10.1016/j.psep.2022.01.063
|
30 |
XUE Yongtao, CHEN Zengyue, WU Zhansheng,et al. Hierarchical construction of a new Z-scheme Bi/BiVO 4-CdS heterojunction for enhanced visible-light photocatalytic degradation of tetracycline hydrochloride[J]. Separation and Purification Technology, 2021, 275:119152. doi: 10.1016/j.seppur.2021.119152
|
31 |
GAO Yan, LIU Fengjiao, CHI Xianhu,et al. A mesoporous nanofibrous BiVO 4-Ni/AgVO 3 Z-scheme heterojunction photocatalyst with enhanced photocatalytic reduction of Cr 6+ and degradation of RhB under visible light[J]. Applied Surface Science, 2022, 603:154416. doi: 10.1016/j.apsusc.2022.154416
|
32 |
DE BRITO J F, CORRADINI P G, ZANONI M V B,et al. The influence of metallic Bi in BiVO 4 semiconductor for artificial photosynthesis[J]. Journal of Alloys and Compounds, 2021, 851:156912. doi: 10.1016/j.jallcom.2020.156912
|
33 |
SELVAKUMAR K, RAJA A, ARUNPANDIAN M,et al. Efficient photocatalytic degradation of ciprofloxacin and bisphenol A under visible light using Gd 2WO 6 loaded ZnO/bentonite nanocomposite[J]. Applied Surface Science, 2019, 481:1109-1119. doi: 10.1016/j.apsusc.2019.03.178
|
34 |
WOLSKI L, GRZELAK K, MUŃKO M,et al. Insight into photocatalytic degradation of ciprofloxacin over CeO 2/ZnO nanocomposites:Unravelling the synergy between the metal oxides and analysis of reaction pathways[J]. Applied Surface Science, 2021, 563:150338. doi: 10.1016/j.apsusc.2021.150338
|
35 |
WEN Xiaoju, NIU Chenggang, ZHANG Lei,et al. Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO 2-Ag/AgBr photocatalyst:Influencing factors,possible degradation pathways,and mechanism insight[J]. Journal of Catalysis, 2018, 358:141-154. doi: 10.1016/j.jcat.2017.11.029
|
36 |
CHUAICHAM C, SEKAR K, XIONG Yihuang,et al. Single-step synthesis of oxygen-doped hollow porous graphitic carbon nitride for photocatalytic ciprofloxacin decomposition[J]. Chemical Engineering Journal, 2021, 425:130502. doi: 10.1016/j.cej.2021.130502
|
37 |
MUKHERJEE I, CILAMKOTI V, DUTTA R K. Sunlight-driven photocatalytic degradation of ciprofloxacin by carbon dots embedded in ZnO nanostructures[J]. ACS Applied Nano Materials, 2021, 4(8):7686-7697. doi: 10.1021/acsanm.1c00883
|
38 |
ZHU Baikang, SONG Debin, JIA Tianbo,et al. Effective visible light-driven photocatalytic degradation of ciprofloxacin over flower-like Fe 3O 4/Bi 2WO 6 composites[J]. ACS Omega, 2021, 6(2):1647-1656. doi: 10.1021/acsomega.0c05616
|
39 |
MA Lizhe, DUAN Jieli, JI Bang,et al. Ligand-metal charge transfer mechanism enhances TiO 2/Bi 2WO 6/rGO nanomaterials photocatalytic efficient degradation of norfloxacin under visible light[J]. Journal of Alloys and Compounds, 2021, 869:158679. doi: 10.1016/j.jallcom.2021.158679
|
40 |
ZHAO Yanyan, LIANG Xuhua, HU Xiaoyun,et al. rGO/Bi 2WO 6 composite as a highly efficient and stable visible-light photocatalyst for norfloxacin degradation in aqueous environment[J]. Journal of Colloid and Interface Science, 2021, 589:336-346. doi: 10.1016/j.jcis.2021.01.016
|
41 |
WU Zhouyue, YU Jinpeng, WANG Wenfang,et al. High-performance photodegradation of norfloxacin enabled by AgI@Ag 3PO 4 nanostructures[J]. Journal of Alloys and Compounds, 2022, 891:161877. doi: 10.1016/j.jallcom.2021.161877
|
42 |
CAO Di, WANG Yanbin, QIAO Meng,et al. Enhanced photoelectrocatalytic degradation of norfloxacin by an Ag 3PO 4/BiVO 4 electrode with low bias[J]. Journal of Catalysis, 2018, 360:240-249. doi: 10.1016/j.jcat.2018.01.017
|
43 |
LI Jingying, XIA Zhi, MA Dong, et al.Improving photocatalytic activity by construction of immobilized Z-scheme CdS/Au/TiO 2 nanobelt photocatalyst for eliminating norfloxacin from water[J]. Journal of Colloid and Interface Science, 2021, 586:243-256. doi: 10.1016/j.jcis.2020.10.088
|
44 |
LI Ning, HE Mengting, LU Xukai,et al. Enhanced norfloxacin degradation by visible-light-driven Mn 3O 4/ γ-MnOOH photocatalysis under weak magnetic field[J]. Science of the Total Environment, 2021, 761:143268. doi: 10.1016/j.scitotenv.2020.143268
|
45 |
WEN Xiaoju, NIU Chenggang, GUO Hai,et al. Photocatalytic degradation of levofloxacin by ternary Ag 2CO 3/CeO 2/AgBr photocatalyst under visible-light irradiation:Degradation pathways,mineralization ability,and an accelerated interfacial charge transfer process study[J]. Journal of Catalysis, 2018, 358:211-223. doi: 10.1016/j.jcat.2017.12.005
|
46 |
CHEN Danyao, LI Bolin, PU Qianmin,et al. Preparation of Ag-AgVO 3/g-C 3N 4 composite photo-catalyst and degradation characteristics of antibiotics[J]. Journal of Hazardous Materials, 2019, 373:303-312. doi: 10.1016/j.jhazmat.2019.03.090
|
47 |
WU Danping, ZHANG Xian, LIU Shiwen,et al. Fabrication of a Z-scheme CeO 2/Bi 2O 4 heterojunction photocatalyst with superior visible-light responsive photocatalytic performance[J]. Journal of Alloys and Compounds, 2022, 909:164671. doi: 10.1016/j.jallcom.2022.164671
|
48 |
XU Jingjing, ZHANG Mou, LI Xueping,et al. Efficient photocatalytic performance of direct Z-scheme photocatalyst Bi 3TaO 7/Mn 0.5Cd 0.5S for levofloxacin degradation under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3):107484. doi: 10.1016/j.jece.2022.107484
|
49 |
RONG Feng, XUE Yisong, TANG Wenhao,et al. Visible-light-active 1D Ag-CoWO 4/CdWO 4 plasmonic photocatalysts boosting levofloxacin conversion[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133:104267. doi: 10.1016/j.jtice.2022.104267
|
50 |
DING Weichen, ZHANG Xuetao, LIU Xiaona,et al. Structural phase-transition in CeVO 4 nanobelts by P-doping enables better levofloxacin photocatalysis[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):105985. doi: 10.1016/j.jece.2021.105985
|
51 |
ZHONG Xin, ZHANG Kaixin, WU Di,et al. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation[J]. Chemical Engineering Journal, 2020, 383:123148. doi: 10.1016/j.cej.2019.123148
|