| 1 | 
																						 
											  TAN Bihui,   FANG Yu,   CHEN Qianlin,et al. Construction of Bi 2O 2CO 3/Ti 3C 2 heterojunctions for enhancing the visible-light photocatalytic activity of tetracycline degradation[J].  Journal of Colloid and Interface Science, 2021, 601:581-593. doi: 10.1016/j.jcis.2021.05.155 
											 											 | 
										
																													
																						| 2 | 
																						 
											  CHEN Guanyi,   YU Yang,   LIANG Lan,et al. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system:A critical review[J].  Journal of Hazardous Materials, 2021, 408:124461. doi: 10.1016/j.jhazmat.2020.124461 
											 											 | 
										
																													
																						| 3 | 
																						 
											  SHI Weilong,   GUO Feng,   YUAN Songliu. In situ synthesis of Z-scheme Ag 3PO 4/CuBi 2O 4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation[J].  Applied Catalysis B:Environmental, 2017, 209:720-728. doi: 10.1016/j.apcatb.2017.03.048 
											 											 | 
										
																													
																						| 4 | 
																						 
											  LUO Jin,   NING Xiaomei,   ZHAN Liang,et al. Facile construction of a fascinating Z-scheme AgI/Zn 3V 2O 8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation[J].  Separation and Purification Technology, 2021, 255:117691. doi: 10.1016/j.seppur.2020.117691 
											 											 | 
										
																													
																						| 5 | 
																						 
											  ZHOU Chengyun,   HUANG Danlian,   XU Piao,et al. Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer[J].  Chemical Engineering Journal, 2019, 370:1077-1086. doi: 10.1016/j.cej.2019.03.279 
											 											 | 
										
																													
																						| 6 | 
																						 
											  DENG Fang,   ZHAO Lina,   LUO Xubiao,et al. Highly efficient visible-light photocatalytic performance of Ag/AgIn 5S 8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater[J].  Chemical Engineering Journal, 2018, 333:423-433. doi: 10.1016/j.cej.2017.09.022 
											 											 | 
										
																													
																						| 7 | 
																						 
											  GUO Feng,   SHI Weilong,   WANG Huibo,et al. Study on highly enhanced photocatalytic tetracycline degradation of type Ⅱ AgI/CuBi 2O 4 and Z-scheme AgBr/CuBi 2O 4 heterojunction photocatalysts[J].  Journal of Hazardous Materials, 2018, 349:111-118. doi: 10.1016/j.jhazmat.2018.01.042 
											 											 | 
										
																													
																						| 8 | 
																						 
											  JIN Xin,   WANG Rui,   JIN Pengkang,et al. How can accumulated organics and salts deteriorate the biological treatment unit in the printing and dyeing wastewater recycling system?[J].  Chemical Engineering Journal, 2021, 413:127528. doi: 10.1016/j.cej.2020.127528 
											 											 | 
										
																													
																						| 9 | 
																						 
											  FUJISHIMA A,   HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J].  Nature, 1972, 238(5358):37-38. doi: 10.1038/238037a0 
											 											 | 
										
																													
																						| 10 | 
																						 
											  FRANK S N,   BARD A J. Semiconductor electrodes. Ⅱ. Electrochemistry at n-type titanium dioxide electrodes in acetonitrile solutions[J].  Journal of the American Chemical Society, 1975, 97(26):7427-7433. doi: 10.1021/ja00859a007 
											 											 | 
										
																													
																						| 11 | 
																						 
											  IKRAM M,   RASHID M,   HAIDER A,et al. A review of photocatalytic characterization,and environmental cleaning,of metal oxide nanostructured materials[J].  Sustainable Materials and Technologies, 2021, 30:e00343. doi: 10.1016/j.susmat.2021.e00343 
											 											 | 
										
																													
																						| 12 | 
																						 
											  VARMA K S,   SHUKLA A D,   TAYADE R J,et al. Photocatalytic performance and interaction mechanism of reverse micelle synthesized Cu-TiO 2 nanomaterials towards levofloxacin under visible LED light[J].  Photochemical & Photobiological Sciences, 2022, 21(1):77-89. doi: 10.1007/s43630-021-00141-8 
											 											 | 
										
																													
																						| 13 | 
																						 
											  QI Kezhen,   CHENG Bei,   YU Jiaguo,et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J].  Journal of Alloys and Compounds, 2017, 727:792-820. doi: 10.1016/j.jallcom.2017.08.142 
											 											 | 
										
																													
																						| 14 | 
																						 
											  VAIANO V,   MATARANGOLO M,   MURCIA J J,et al. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J].  Applied Catalysis B:Environmental, 2018, 225:197-206. doi: 10.1016/j.apcatb.2017.11.075 
											 											 | 
										
																													
																						| 15 | 
																						 
											  MOHAMED R M,   ISMAIL A A,   KADI M W,et al. Fabrication of mesoporous PtO-ZnO nanocomposites with promoted photocatalytic performance for degradation of tetracycline[J].  ACS Omega, 2021, 6(9):6438-6447. doi: 10.1021/acsomega.1c00135 
											 											 | 
										
																													
																						| 16 | 
																						 
											  AYODHYA D,   VEERABHADRAM G. A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection[J].  Materials Today Energy, 2018, 9:83-113. doi: 10.1016/j.mtener.2018.05.007 
											 											 | 
										
																													
																						| 17 | 
																						 
											  LEE G J,   WU J J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications:A review[J].  Powder Technology, 2017, 318:8-22. doi: 10.1016/j.powtec.2017.05.022 
											 											 | 
										
																													
																						| 18 | 
																						 
											  SHARMA K,   RAIZADA P,   HASIJA V,et al. ZnS-based quantum dots as photocatalysts for water purification[J].  Journal of Water Process Engineering, 2021, 43:102217. doi: 10.1016/j.jwpe.2021.102217 
											 											 | 
										
																													
																						| 19 | 
																						 
											  POORNAPRAKASH B,   CHALAPATHI U,   KUMAR M,et al. Enhanced photocatalytic degradation and hydrogen evolution of ZnS nanoparticles by(Co,Er) co-doping[J].  Materials Letters, 2020, 273:127887. doi: 10.1016/j.matlet.2020.127887 
											 											 | 
										
																													
																						| 20 | 
																						 
											  LI Yanxia,   FU Min,   LU Peng,et al. Visible light photocatalytic abatement of tetracycline over unique Z-scheme ZnS/PI composites[J].  Applied Surface Science, 2022, 575:151798. doi: 10.1016/j.apsusc.2021.151798 
											 											 | 
										
																													
																						| 21 | 
																						 
											  LIAO Guangfu,   FANG Jiasheng,   LI Qing,et al. Ag-based nanocomposites:Synthesis and applications in catalysis[J].  Nanoscale, 2019, 11(15):7062-7096. doi: 10.1039/c9nr01408j 
											 											 | 
										
																													
																						| 22 | 
																						 
											  LI Gaiping,   WANG Yuexiang,   MAO Lanqun. Recent progress in highly efficient Ag-based visible-light photocatalysts[J].  RSC Advances, 2014, 4(96):53649-53661. doi: 10.1039/c4ra08044k 
											 											 | 
										
																													
																						| 23 | 
																						 
											  ZHANG Shuqu,   ZHANG Zhifeng,   LI Bing,et al. Hierarchical Ag 3PO 4@ZnIn 2S 4 nanoscoparium:An innovative Z-scheme photocatalyst for highly efficient and predictable tetracycline degradation[J].  Journal of Colloid and Interface Science, 2021, 586:708-718. doi: 10.1016/j.jcis.2020.10.140 
											 											 | 
										
																													
																						| 24 | 
																						 
											  WU Fan,   ZHOU Feng,   ZHU Zhenyu,et al. Enhanced photocatalytic activities of Ag 3PO 4/GO in tetracycline degradation[J].  Chemical Physics Letters, 2019, 724:90-95. doi: 10.1016/j.cplett.2019.03.058 
											 											 | 
										
																													
																						| 25 | 
																						 
											  GE Ming,   LIU Wei,   HU Xinrong,et al. Magnetically separable Ag/AgBr/NiFe 2O 4 composite as a highly efficient visible light plasmonic photocatalyst[J].  Journal of Physics and Chemistry of Solids, 2017, 109:1-8. doi: 10.1016/j.jpcs.2017.05.008 
											 											 | 
										
																													
																						| 26 | 
																						 
											  LIU Ying,   KONG Jijie,   YUAN Julong,et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag 2CO 3/BiVO 4 plasmonic heterojunction photocatalyst for tetracycline degradation[J].  Chemical Engineering Journal, 2018, 331:242-254. doi: 10.1016/j.cej.2017.08.114 
											 											 | 
										
																													
																						| 27 | 
																						 
											  LI Ruizhen,   CHEN Hanyang,   XIONG Jianrong,et al. A mini review on bismuth-based Z-scheme photocatalysts[J].  Materials, 2020, 13(22):5057. doi: 10.3390/ma13225057 
											 											 | 
										
																													
																						| 28 | 
																						 
											  LI Shijie,   WANG Chunchun,   LIU Yanping,et al. Photocatalytic degradation of tetracycline antibiotic by a novel Bi 2Sn 2O 7/Bi 2MoO 6 S-scheme heterojunction:Performance,mechanism insight and toxicity assessment[J].  Chemical Engineering Journal, 2022, 429:132519. doi: 10.1016/j.cej.2021.132519 
											 											 | 
										
																													
																						| 29 | 
																						 
											  KUMAR G,   DUTTA R K. Sunlight mediated photo-Fenton degradation of tetracycline antibiotic and methylene blue dye in aqueous medium using FeWO 4/Bi 2MoO 6 nanocomposite[J].  Process Safety and Environmental Protection, 2022, 159:862-873. doi: 10.1016/j.psep.2022.01.063 
											 											 | 
										
																													
																						| 30 | 
																						 
											  XUE Yongtao,   CHEN Zengyue,   WU Zhansheng,et al. Hierarchical construction of a new Z-scheme Bi/BiVO 4-CdS heterojunction for enhanced visible-light photocatalytic degradation of tetracycline hydrochloride[J].  Separation and Purification Technology, 2021, 275:119152. doi: 10.1016/j.seppur.2021.119152 
											 											 | 
										
																													
																						| 31 | 
																						 
											  GAO Yan,   LIU Fengjiao,   CHI Xianhu,et al. A mesoporous nanofibrous BiVO 4-Ni/AgVO 3 Z-scheme heterojunction photocatalyst with enhanced photocatalytic reduction of Cr 6+ and degradation of RhB under visible light[J].  Applied Surface Science, 2022, 603:154416. doi: 10.1016/j.apsusc.2022.154416 
											 											 | 
										
																													
																						| 32 | 
																						 
											  DE BRITO J F,   CORRADINI P G,   ZANONI M V B,et al. The influence of metallic Bi in BiVO 4 semiconductor for artificial photosynthesis[J].  Journal of Alloys and Compounds, 2021, 851:156912. doi: 10.1016/j.jallcom.2020.156912 
											 											 | 
										
																													
																						| 33 | 
																						 
											  SELVAKUMAR K,   RAJA A,   ARUNPANDIAN M,et al. Efficient photocatalytic degradation of ciprofloxacin and bisphenol A under visible light using Gd 2WO 6 loaded ZnO/bentonite nanocomposite[J].  Applied Surface Science, 2019, 481:1109-1119. doi: 10.1016/j.apsusc.2019.03.178 
											 											 | 
										
																													
																						| 34 | 
																						 
											  WOLSKI L,   GRZELAK K,   MUŃKO M,et al. Insight into photocatalytic degradation of ciprofloxacin over CeO 2/ZnO nanocomposites:Unravelling the synergy between the metal oxides and analysis of reaction pathways[J].  Applied Surface Science, 2021, 563:150338. doi: 10.1016/j.apsusc.2021.150338 
											 											 | 
										
																													
																						| 35 | 
																						 
											  WEN Xiaoju,   NIU Chenggang,   ZHANG Lei,et al. Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO 2-Ag/AgBr photocatalyst:Influencing factors,possible degradation pathways,and mechanism insight[J].  Journal of Catalysis, 2018, 358:141-154. doi: 10.1016/j.jcat.2017.11.029 
											 											 | 
										
																													
																						| 36 | 
																						 
											  CHUAICHAM C,   SEKAR K,   XIONG Yihuang,et al. Single-step synthesis of oxygen-doped hollow porous graphitic carbon nitride for photocatalytic ciprofloxacin decomposition[J].  Chemical Engineering Journal, 2021, 425:130502. doi: 10.1016/j.cej.2021.130502 
											 											 | 
										
																													
																						| 37 | 
																						 
											  MUKHERJEE I,   CILAMKOTI V,   DUTTA R K. Sunlight-driven photocatalytic degradation of ciprofloxacin by carbon dots embedded in ZnO nanostructures[J].  ACS Applied Nano Materials, 2021, 4(8):7686-7697. doi: 10.1021/acsanm.1c00883 
											 											 | 
										
																													
																						| 38 | 
																						 
											  ZHU Baikang,   SONG Debin,   JIA Tianbo,et al. Effective visible light-driven photocatalytic degradation of ciprofloxacin over flower-like Fe 3O 4/Bi 2WO 6 composites[J].  ACS Omega, 2021, 6(2):1647-1656. doi: 10.1021/acsomega.0c05616 
											 											 | 
										
																													
																						| 39 | 
																						 
											  MA Lizhe,   DUAN Jieli,   JI Bang,et al. Ligand-metal charge transfer mechanism enhances TiO 2/Bi 2WO 6/rGO nanomaterials photocatalytic efficient degradation of norfloxacin under visible light[J].  Journal of Alloys and Compounds, 2021, 869:158679. doi: 10.1016/j.jallcom.2021.158679 
											 											 | 
										
																													
																						| 40 | 
																						 
											  ZHAO Yanyan,   LIANG Xuhua,   HU Xiaoyun,et al. rGO/Bi 2WO 6 composite as a highly efficient and stable visible-light photocatalyst for norfloxacin degradation in aqueous environment[J].  Journal of Colloid and Interface Science, 2021, 589:336-346. doi: 10.1016/j.jcis.2021.01.016 
											 											 | 
										
																													
																						| 41 | 
																						 
											  WU Zhouyue,   YU Jinpeng,   WANG Wenfang,et al. High-performance photodegradation of norfloxacin enabled by AgI@Ag 3PO 4 nanostructures[J].  Journal of Alloys and Compounds, 2022, 891:161877. doi: 10.1016/j.jallcom.2021.161877 
											 											 | 
										
																													
																						| 42 | 
																						 
											  CAO Di,   WANG Yanbin,   QIAO Meng,et al. Enhanced photoelectrocatalytic degradation of norfloxacin by an Ag 3PO 4/BiVO 4 electrode with low bias[J].  Journal of Catalysis, 2018, 360:240-249. doi: 10.1016/j.jcat.2018.01.017 
											 											 | 
										
																													
																						| 43 | 
																						 
											  LI Jingying,   XIA Zhi,   MA Dong, et al.Improving photocatalytic activity by construction of immobilized Z-scheme CdS/Au/TiO 2 nanobelt photocatalyst for eliminating norfloxacin from water[J].  Journal of Colloid and Interface Science, 2021, 586:243-256. doi: 10.1016/j.jcis.2020.10.088 
											 											 | 
										
																													
																						| 44 | 
																						 
											  LI Ning,   HE Mengting,   LU Xukai,et al. Enhanced norfloxacin degradation by visible-light-driven Mn 3O 4/ γ-MnOOH photocatalysis under weak magnetic field[J].  Science of the Total Environment, 2021, 761:143268. doi: 10.1016/j.scitotenv.2020.143268 
											 											 | 
										
																													
																						| 45 | 
																						 
											  WEN Xiaoju,   NIU Chenggang,   GUO Hai,et al. Photocatalytic degradation of levofloxacin by ternary Ag 2CO 3/CeO 2/AgBr photocatalyst under visible-light irradiation:Degradation pathways,mineralization ability,and an accelerated interfacial charge transfer process study[J].  Journal of Catalysis, 2018, 358:211-223. doi: 10.1016/j.jcat.2017.12.005 
											 											 | 
										
																													
																						| 46 | 
																						 
											  CHEN Danyao,   LI Bolin,   PU Qianmin,et al. Preparation of Ag-AgVO 3/g-C 3N 4 composite photo-catalyst and degradation characteristics of antibiotics[J].  Journal of Hazardous Materials, 2019, 373:303-312. doi: 10.1016/j.jhazmat.2019.03.090 
											 											 | 
										
																													
																						| 47 | 
																						 
											  WU Danping,   ZHANG Xian,   LIU Shiwen,et al. Fabrication of a Z-scheme CeO 2/Bi 2O 4 heterojunction photocatalyst with superior visible-light responsive photocatalytic performance[J].  Journal of Alloys and Compounds, 2022, 909:164671. doi: 10.1016/j.jallcom.2022.164671 
											 											 | 
										
																													
																						| 48 | 
																						 
											  XU Jingjing,   ZHANG Mou,   LI Xueping,et al. Efficient photocatalytic performance of direct Z-scheme photocatalyst Bi 3TaO 7/Mn 0.5Cd 0.5S for levofloxacin degradation under visible light irradiation[J].  Journal of Environmental Chemical Engineering, 2022, 10(3):107484. doi: 10.1016/j.jece.2022.107484 
											 											 | 
										
																													
																						| 49 | 
																						 
											  RONG Feng,   XUE Yisong,   TANG Wenhao,et al. Visible-light-active 1D Ag-CoWO 4/CdWO 4 plasmonic photocatalysts boosting levofloxacin conversion[J].  Journal of the Taiwan Institute of Chemical Engineers, 2022, 133:104267. doi: 10.1016/j.jtice.2022.104267 
											 											 | 
										
																													
																						| 50 | 
																						 
											  DING Weichen,   ZHANG Xuetao,   LIU Xiaona,et al. Structural phase-transition in CeVO 4 nanobelts by P-doping enables better levofloxacin photocatalysis[J].  Journal of Environmental Chemical Engineering, 2021, 9(5):105985. doi: 10.1016/j.jece.2021.105985 
											 											 | 
										
																													
																						| 51 | 
																						 
											  ZHONG Xin,   ZHANG Kaixin,   WU Di,et al. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation[J].  Chemical Engineering Journal, 2020, 383:123148. doi: 10.1016/j.cej.2019.123148 
											 											 |