1 |
MARTINS G, SALVADOR A F, PEREIRA L,et al. Methane production and conductive materials:A critical review[J]. Environmental Science & Technology, 2018, 52(18):10241-10253. doi: 10.1021/acs.est.8b01913
|
2 |
CHENG Qiwen, CALL D F. Hardwiring microbes via direct interspecies electron transfer:Mechanisms and applications[J]. Environmental Science:Processes & Impacts, 2016, 18(8):968-980. doi: 10.1039/c6em00219f
|
3 |
CRUZ VIGGI C, ROSSETTI S, FAZI S,et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J]. Environmental Science & Technology, 2014, 48(13):7536-7543. doi: 10.1021/es5016789
|
4 |
WANG Dexin, HAN Yuxing, HAN Hongjun,et al. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite[J]. Bioresource Technology, 2018, 257:147-156. doi: 10.1016/j.biortech.2018.02.084
|
5 |
YANG Yafei, ZHANG Yaobin, LI Zeyu,et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition[J]. Journal of Cleaner Production, 2017, 149:1101-1108. doi: 10.1016/j.jclepro.2017.02.156
|
6 |
SUN Tianran, LEVIN B D A, GUZMAN J J L,et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8:14873. doi: 10.1038/ncomms14873
|
7 |
LI Qian, GAO Xin, LIU Yaqian,et al. Biochar and GAC intensify anaerobic phenol degradation via distinctive adsorption and conductive properties[J]. Journal of Hazardous Materials, 2021, 405:124183. doi: 10.1016/j.jhazmat.2020.124183
|
8 |
XU Yanguang, WANG Mingwei, YU Qilin,et al. Enhancing methanogenesis from anaerobic digestion of propionate with addition of Fe oxides supported on conductive carbon cloth[J]. Bioresource Technology, 2020, 302:122796. doi: 10.1016/j.biortech.2020.122796
|
9 |
YE Jie, HU Andong, REN Guoping,et al. Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud[J]. Water Research, 2018, 134:54-62. doi: 10.1016/j.watres.2018.01.062
|
10 |
LI Shiyang, CAO Yi, ZHAO Zhiqiang,et al. Regulating secretion of extracellular polymeric substances through dosing magnetite and zerovalent iron nanoparticles to affect anaerobic digestion mode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10):9655-9662. doi: 10.1021/acssuschemeng.9b01252
|
11 |
ZHAI Shimin, LI Min, XIONG Yonghui,et al. Dual resource utilization for tannery sludge:Effects of sludge biochars(BCs) on volatile fatty acids(VFAs) production from sludge anaerobic digestion[J]. Bioresource Technology, 2020, 316:123903. doi: 10.1016/j.biortech.2020.123903
|
12 |
PARK J H, PARK J H, SEONG H J,et al. Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon[J]. Bioresource Technology, 2018, 259:414-422. doi: 10.1016/j.biortech.2018.03.050
|
13 |
MA Jiaying, WEI Huawei, SU Yinglong,et al. Powdered activated carbon facilitates methane productivity of anaerobic co-digestion via acidification alleviating:Microbial and metabolic insights[J]. Bioresource Technology, 2020, 313:123706. doi: 10.1016/j.biortech.2020.123706
|
14 |
|
15 |
ZHAO Zhiqiang, LI Yang, ZHANG Yaobin,et al. Sparking anaerobic digestion:Promoting direct interspecies electron transfer to enhance methane production[J]. Iscience, 2020, 23(12):101794. doi: 10.1016/j.isci.2020.101794
|
16 |
SU Chengyuan, TAO Afeng, ZHAO Lijian,et al. Roles of modified biochar in the performance,sludge characteristics,and microbial community features of anaerobic reactor for treatment food waste[J]. Science of the Total Environment, 2021, 770:144668. doi: 10.1016/j.scitotenv.2020.144668
|
17 |
JIANG Qian, LIU He, ZHANG Yan,et al. Insight into sludge anaerobic digestion with granular activated carbon addition:Methanogenic acceleration and methane reduction relief[J]. Bioresource Technology, 2021, 319:124131. doi: 10.1016/j.biortech.2020.124131
|
18 |
WAN Hongyou, WANG Fuzhen, CHEN Yuhan,et al. Enhanced reactive red 2 anaerobic degradation through improving electron transfer efficiency by nano-Fe 3O 4 modified granular activated carbon[J]. Renewable Energy, 2021, 179:696-704. doi: 10.1016/j.renene.2021.07.046
|
19 |
FAGBOHUNGBE M O, HERBERT B M J, HURST L,et al. Impact of biochar on the anaerobic digestion of citrus peel waste[J]. Bioresource Technology, 2016, 216:142-149. doi: 10.1016/j.biortech.2016.04.106
|
20 |
Fan LÜ, LIU Yang, SHAO Liming,et al. Powdered biochar doubled microbial growth in anaerobic digestion of oil[J]. Applied Energy, 2019, 247:605-614. doi: 10.1016/j.apenergy.2019.04.052
|
21 |
FUJINAWA K, NAGOYA M, KOUZUMA A,et al. Conductive carbon nanoparticles inhibit methanogens and stabilize hydrogen production in microbial electrolysis cells[J]. Applied Microbiology and Biotechnology, 2019, 103(15):6385-6392. doi: 10.1007/s00253-019-09946-1
|
22 |
ZENG Shengquan, HARRIS R, KAN E. Effect of alfalfa-derived biochar on anaerobic digestion of dairy manure[J]. Agronomy, 2022, 12(4):911. doi: 10.3390/agronomy12040911
|
23 |
PAN Junting, MA Junyi, ZHAI Limei,et al. Achievements of biochar application for enhanced anaerobic digestion:A review[J]. Bioresource Technology, 2019, 292:122058. doi: 10.1016/j.biortech.2019.122058
|
24 |
KANG Xiaorong, LIU Yali. Performance and mechanism of conductive magnetite particle-enhanced excess sludge anaerobic digestion for biogas recovery[J]. RSC Advances, 2021, 11(56):35559-35566. doi: 10.1039/d1ra06236k
|
25 |
BUENO-LÓPEZ J I, RANGEL-MENDEZ J R, ALATRISTE-MONDRAGÓN F,et al. Graphene oxide triggers mass transfer limitations on the methanogenic activity of an anaerobic consortium with a particulate substrate[J]. Chemosphere, 2018, 211:709-716. doi: 10.1016/j.chemosphere.2018.08.001
|
26 |
Honghong LÜ, HE Yuhe, TANG Jingchun,et al. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment[J]. Environmental Pollution, 2016, 218:1-7. doi: 10.1016/j.envpol.2016.08.014
|
27 |
QIN Yong, WANG Haoshu, LI Xiangru,et al. Improving methane yield from organic fraction of municipal solid waste(OFMSW) with magnetic rice-straw biochar[J]. Bioresource Technology, 2017, 245:1058-1066. doi: 10.1016/j.biortech.2017.09.047
|
28 |
LIU Haoyu, XU Ying, LI Lei,et al. A review on application of single and composite conductive additives for anaerobic digestion:Advances,challenges and prospects[J]. Resources,Conservation and Recycling, 2021, 174:105844. doi: 10.1016/j.resconrec.2021.105844
|
29 |
|
|
PU Shengyan, HE Lingling, LIU Shibin. Review on the preparation of biochar composites and its applications in wastewater treatment[J]. Industrial Water Treatment, 2019, 39(9):1-7. doi: 10.11894/iwt.2019-0390
|
30 |
YANG Zhiman, GUO Rongbo, DONG Xiaohuan. Promoting biomethane production from propionate with Fe 2O 3@carbon nanotubes composites[J]. Science of the Total Environment, 2022, 818:151762. doi: 10.1016/j.scitotenv.2021.151762
|
31 |
ZHUANG Haifeng, ZHU Hao, ZHANG Jin,et al. Enhanced 2,4,6-trichlorophenol anaerobic degradation by Fe 3O 4 supported on water hyacinth biochar for triggering direct interspecies electron transfer and its use in coal gasification wastewater treatment[J]. Bioresource Technology, 2020, 296:122306. doi: 10.1016/j.biortech.2019.122306
|
32 |
WAMBUGU C W, RENE E R, VAN DE VOSSENBERG J,et al. Role of biochar in anaerobic digestion based biorefinery for food waste[J]. Frontiers in Energy Research, 2019, 7:14. doi: 10.3389/fenrg.2019.00014
|
33 |
ZHU Hao, HAN Yuxing, MA Wencheng,et al. New insights into enhanced anaerobic degradation of coal gasification wastewater(CGW) with the assistance of graphene[J]. Bioresource Technology, 2018, 262:302-309. doi: 10.1016/j.biortech.2018.04.080
|
34 |
LOGAN M, TAN L C, NZETEU C O,et al. Enhanced anaerobic digestion of dairy wastewater in a granular activated carbon amended sequential batch reactor[J]. GCB Bioenergy, 2022, 14(7):840-857. doi: 10.1111/gcbb.12947
|
35 |
DANG Hongyu, YU N, MOU Anqi,et al. Metagenomic insights into direct interspecies electron transfer and quorum sensing in blackwater anaerobic digestion reactors supplemented with granular activated carbon[J]. Bioresource Technology, 2022, 352:127113. doi: 10.1016/j.biortech.2022.127113
|
36 |
WU Nan, LIU Tao, LI Qian,et al. Enhancing anaerobic methane production in integrated floating-film activated sludge system filled with novel MWCNTs-modified carriers[J]. Chemosphere, 2022, 299:134483. doi: 10.1016/j.chemosphere.2022.134483
|
37 |
CHEN Qian, LIU Chuanqi, LIU Xinying,et al. Magnetite enhances anaerobic digestion of high salinity organic wastewater[J]. Environmental Research, 2020, 189:109884. doi: 10.1016/j.envres.2020.109884
|
38 |
ZHONG Dan, LI Jinxin, MA Wencheng,et al. Clarifying the synergetic effect of magnetite nanoparticles in the methane production process[J]. Environmental Science and Pollution Research, 2020, 27(14):17054-17062. doi: 10.1007/s11356-020-07828-y
|
39 |
YIN Qidong, HE Kai, LIU Aike,et al. Enhanced system performance by dosing ferroferric oxide during the anaerobic treatment of tryptone-based high-strength wastewater[J]. Applied Microbiology and Biotechnology, 2017, 101(9):3929-3939. doi: 10.1007/s00253-017-8194-8
|
40 |
JIN Zhen, ZHAO Zhiqiang, ZHANG Yaobin. Potential of direct interspecies electron transfer in synergetic enhancement of methanogenesis and sulfate removal in an up-flow anaerobic sludge blanket reactor with magnetite[J]. Science of the Total Environment, 2019, 677:299-306. doi: 10.1016/j.scitotenv.2019.04.372
|
41 |
SUN Muchen, ZHANG Zhaohan, LIU Guohong,et al. Enhancing methane production of synthetic brewery water with granular activated carbon modified with nanoscale zero-valent iron(nZVI) in anaerobic system[J]. Science of the Total Environment, 2021, 760:143933. doi: 10.1016/j.scitotenv.2020.143933
|
42 |
HU Yong, SHI Chen, MA Haiyuan,et al. Biofilm formation enhancement in anaerobic treatment of high salinity wastewater:Effect of biochar/Fe addition[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105603. doi: 10.1016/j.jece.2021.105603
|
43 |
ZHANG Guangyi, SHI Yinghao, ZHAO Zisheng,et al. Enhanced two-phase anaerobic digestion of waste-activated sludge by combining magnetite and zero-valent iron[J]. Bioresource Technology, 2020, 306:123122. doi: 10.1016/j.biortech.2020.123122
|
44 |
庄海峰,唐浩杰,单胜道,等. 纳米Fe3O4强化厌氧活性污泥降解偶氮染料废水[J]. 工业水处理,2019,39(12):41-44.
|
|
ZHUANG Haifeng, TANG Haojie, SHAN Shengdao,et al. Degradation performance of azo dye wastewater by Fe3O4 nanoparticles-enhanced anaerobic activated sludge[J]. Industrial Water Treatment,2019,39(12):41-44.
|
45 |
ZHANG Zhaohan, GAO Peng, CHENG Jiaqi,et al. Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/nZVI mediator[J]. Water Research, 2018, 136:54-63. doi: 10.1016/j.watres.2018.02.025
|
46 |
CHENG Dongle, NGO H H, GUO Wenshan,et al. Improving sulfonamide antibiotics removal from swine wastewater by supplying a new pomelo peel derived biochar in an anaerobic membrane bioreactor[J]. Bioresource Technology, 2021, 319:124160. doi: 10.1016/j.biortech.2020.124160
|
47 |
ZIGANSHINA E E, BULYNINA S S, ZIGANSHIN A M. Impact of granular activated carbon on anaerobic process and microbial community structure during mesophilic and thermophilic anaerobic digestion of chicken manure[J]. Sustainability, 2022, 14(1):447. doi: 10.3390/su14010447
|
48 |
ZHANG Junya, LU Tiedong, WANG Ziyue,et al. Effects of magnetite on anaerobic digestion of swine manure:Attention to methane production and fate of antibiotic resistance genes[J]. Bioresource Technology, 2019, 291:121847. doi: 10.1016/j.biortech.2019.121847
|
49 |
LIM E Y, LEE J T E, ZHANG Le,et al. Abrogating the inhibitory effects of volatile fatty acids and ammonia in overloaded food waste anaerobic digesters via the supplementation of nano-zero valent iron modified biochar[J]. Science of the Total Environment, 2022, 817:152968. doi: 10.1016/j.scitotenv.2022.152968
|
50 |
ZHAO Zhiqiang, LI Yang, QUAN Xie,et al. Towards engineering application:Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J]. Water Research, 2017, 115:266-277. doi: 10.1016/j.watres.2017.02.067
|
51 |
DUAN Xu, CHEN Yunzhi, YAN Yuanyuan,et al. New method for algae comprehensive utilization:Algae-derived biochar enhances algae anaerobic fermentation for short-chain fatty acids production[J]. Bioresource Technology, 2019, 289:121637. doi: 10.1016/j.biortech.2019.121637
|
52 |
ZHAO Zisheng, LI Yang, ZHAO Zhiqiang,et al. Effects of dissimilatory iron reduction on acetate production from the anaerobic fermentation of waste activated sludge under alkaline conditions[J]. Environmental Research, 2020, 182:109045. doi: 10.1016/j.envres.2019.109045
|
53 |
PARITOSH K, MATHUR S, PAREEK N,et al. Enhancing hydrolysis and syntropy simultaneously in solid state anaerobic digestion:Digester performance and techno-economic evaluation[J]. Bioresource Technology, 2021, 338:125538. doi: 10.1016/j.biortech.2021.125538
|
54 |
WANG Chen, LIU Jieyi, XU Xiangyang,et al. Response of methanogenic granules enhanced by magnetite to ammonia stress[J]. Water Research, 2022, 212:118123. doi: 10.1016/j.watres.2022.118123
|
55 |
ZHANG Yingdi, ZHANG Lei, YU N,et al. Enhancing the resistance to H 2S toxicity during anaerobic digestion of low-strength wastewater through granular activated carbon(GAC) addition[J]. Journal of Hazardous Materials, 2022, 430:128473. doi: 10.1016/j.jhazmat.2022.128473
|
56 |
TAN L C, LIN Richen, MURPHY J,et al. Granular activated carbon supplementation enhances anaerobic digestion of lipid-rich wastewaters[J]. Renewable Energy, 2021, 171:958-970. doi: 10.1016/j.renene.2021.02.087
|
57 |
LI Pengcheng, LIU Ziyi, ZHAO Mingxing,et al. Enhanced methane generation from anaerobic tridigestion of organic solid wastes by direct interspecies electron transfer stimulation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(36):12323-12331. doi: 10.1021/acssuschemeng.1c04027
|
58 |
WANG Gaojun, LI Qian, GAO Xin,et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar:Performance and associated mechanisms[J]. Bioresource Technology, 2018, 250:812-820. doi: 10.1016/j.biortech.2017.12.004
|
59 |
XU Suyun, HAN Runqi, ZHANG Yuchen,et al. Differentiated stimulating effects of activated carbon on methanogenic degradation of acetate,propionate and butyrate[J]. Waste Management, 2018, 76:394-403. doi: 10.1016/j.wasman.2018.03.037
|
60 |
LEE S H, KANG H J, LIM T G,et al. Magnetite and granular activated carbon improve methanogenesis via different metabolic routes[J]. Fuel, 2020, 281:118768. doi: 10.1016/j.fuel.2020.118768
|
61 |
XIE Sihuang, LI Xuan, WANG Chengduan,et al. Enhanced anaerobic digestion of primary sludge with additives:Performance and mechanisms[J]. Bioresource Technology, 2020, 316:123970. doi: 10.1016/j.biortech.2020.123970
|
62 |
KUTLAR F E, TUNCA B, YILMAZEL Y D. Carbon-based conductive materials enhance biomethane recovery from organic wastes:A review of the impacts on anaerobic treatment[J]. Chemosphere, 2022, 290:133247. doi: 10.1016/j.chemosphere.2021.133247
|
63 |
PARK J H, KANG H J, PARK K H,et al. Direct interspecies electron transfer via conductive materials:A perspective for anaerobic digestion applications[J]. Bioresource Technology, 2018, 254:300-311. doi: 10.1016/j.biortech.2018.01.095
|
64 |
CHEN Le, FANG Wei, CHANG Jianning,et al. Improvement of direct interspecies electron transfer via adding conductive materials in anaerobic digestion:Mechanisms,performances,and challenges[J]. Frontiers in Microbiology, 2022, 13:860749. doi: 10.3389/fmicb.2022.860749
|
65 |
LIU Fanghua, ROTARU A E, SHRESTHA P M,et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5(10):8982-8989. doi: 10.1039/c2ee22459c
|
66 |
YUAN Haiyan, DING Longjun, ZAMA E F,et al. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate[J]. Environmental Science & Technology, 2018, 52(21):12198-12207. doi: 10.1021/acs.est.8b04121
|
67 |
CRUZ VIGGI C, SIMONETTI S, PALMA E,et al. Enhancing methane production from food waste fermentate using biochar:The added value of electrochemical testing in pre-selecting the most effective type of biochar[J]. Biotechnology for Biofuels, 2017, 10(1):1-13. doi: 10.1186/s13068-017-0994-7
|
68 |
WANG Caiqin, WANG Chen, JIN Luonan,et al. Response of syntrophic aggregates to the magnetite loss in continuous anaerobic bioreactor[J]. Water Research, 2019, 164:114925. doi: 10.1016/j.watres.2019.114925
|
69 |
Changjin OU, SHEN Jinyou, ZHANG Shuai,et al. Coupling of iron shavings into the anaerobic system for enhanced 2,4-dinitroanisole reduction in wastewater[J]. Water Research, 2016, 101:457-466. doi: 10.1016/j.watres.2016.06.002
|
70 |
ZHANG Le, LIM E Y,LOH K,et al. Biochar enhanced thermophilic anaerobic digestion of food waste:Focusing on biochar particle size,microbial community analysis and pilot-scale application[J]. Energy Conversion and Management, 2020, 209:112654. doi: 10.1016/j.enconman.2020.112654
|
71 |
WANG Chen, LIU Yang, WANG Caiqin,et al. Biochar facilitates rapid restoration of methanogenesis by enhancing direct interspecies electron transfer after high organic loading shock[J]. Bioresource Technology, 2021, 320:124360. doi: 10.1016/j.biortech.2020.124360
|
72 |
LI Qian, XU Manjuan, WANG Gaojun,et al. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment[J]. Bioresource Technology, 2018, 249:1009-1016. doi: 10.1016/j.biortech.2017.11.002
|
73 |
SHEN Nan, LIANG Zhu, CHEN Yun,et al. Enhancement of syntrophic acetate oxidation pathway via single walled carbon nanotubes addition under high acetate concentration and thermophilic condition[J]. Bioresource Technology, 2020, 306:123182. doi: 10.1016/j.biortech.2020.123182
|
74 |
HUANG Junjie, MA Ke, XIA Xingxuan,et al. Biochar and magnetite promote methanogenesis during anaerobic decomposition of rice straw[J]. Soil Biology and Biochemistry, 2020, 143:107740. doi: 10.1016/j.soilbio.2020.107740
|
75 |
WANG Caiqin, LIU Yang, JIN Shuai,et al. Responsiveness extracellular electron transfer(EET) enhancement of anaerobic digestion system during start-up and starvation recovery stages via magnetite addition[J]. Bioresource Technology, 2019, 272:162-170. doi: 10.1016/j.biortech.2018.10.013
|
76 |
LEI Yuqing, WEI Lianxue, LIU Tianyuan,et al. Magnetite enhances anaerobic digestion and methanogenesis of fresh leachate from a municipal solid waste incineration plant[J]. Chemical Engineering Journal, 2018, 348:992-999. doi: 10.1016/j.cej.2018.05.060
|
77 |
HOLMES D, SHRESTHA P, WALKER D,et al. Metatranscriptomic evidence for direct interspecies electron transfer between geobacter and methanothrix species in methanogenic rice paddy soils[J]. Applied and Environmental Microbiology, 2017, 83(9). DOI: 10.1128/aem.00223-17 .
|
78 |
DANG Yan, SUN Dezhi, WOODARD T L,et al. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste(OFMSW) with carbon-based conductive materials[J]. Bioresource Technology, 2017, 238:30-38. doi: 10.1016/j.biortech.2017.04.021
|
79 |
YAN Wangwang, SHEN Nan, XIAO Yeyuan,et al. The role of conductive materials in the start-up period of thermophilic anaerobic system[J]. Bioresource Technology, 2017, 239:336-344. doi: 10.1016/j.biortech.2017.05.046
|
80 |
CHENG Jun, LI Hui, DING Lingkan,et al. Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion:The effect of magnetite nanoparticles on microbial electron transfer and syntrophism[J]. Chemical Engineering Journal, 2020, 397:125394. doi: 10.1016/j.cej.2020.125394
|
81 |
CHEN Shengjie, TAO Ziletao, YAO Fubing,et al. Enhanced anaerobic co-digestion of waste activated sludge and food waste by sulfidated microscale zerovalent iron:Insights in direct interspecies electron transfer mechanism[J]. Bioresource Technology, 2020, 316:123901. doi: 10.1016/j.biortech.2020.123901
|
82 |
YAN Wangwang, SUN Faqian, LIU Jianbo,et al. Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration[J]. Chemical Engineering Journal, 2018, 352:1-9. doi: 10.1016/j.cej.2018.06.187
|
83 |
CHEN Jiaqi, ZHANG Pengshuai, ZHANG Jingxin,et al. Micro-nano magnetite-loaded biochar enhances interspecies electron transfer and viability of functional microorganisms in anaerobic digestion[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(8):2811-2821. doi: 10.1021/acssuschemeng.1c08288
|