1 |
LONG Xiaojing, WANG Xin, GUO Xuejun,et al. A review of removal technology for antimony in aqueous solution[J]. Journal of Environmental Sciences, 2020, 90:189-204. doi: 10.1016/j.jes.2019.12.008
|
2 |
ZHENG Jing, YANG Yong, FAN Xiulin,et al. Extremely stable antimony-carbon composite anodes for potassium-ion batteries[J]. Energy & Environmental Science, 2019, 12(2):615-623. doi: 10.1039/c8ee02836b
|
3 |
|
|
LIU Lianhua, OUYANG Wei, HE Mengchang,et al. Research trends in effects of antimony on crops based on bibliometrics[J]. China Environmental Science, 2022, 42(10):4798-4806. doi: 10.3969/j.issn.1000-6923.2022.10.038
|
4 |
|
|
LI Zhiping, YANG Jingjing, SUN Chengqi,et al. Research progress in the treatment methods for antimony pollution in water[J]. Industrial Water Treatment, 2018, 38(6):12-16. doi: 10.11894/1005-829x.2018.38(6).012
|
5 |
BOLAN N, KUMAR M, SINGH E,et al. Antimony contamination and its risk management in complex environmental settings:A review[J]. Environment International, 2022, 158:106908. doi: 10.1016/j.envint.2021.106908
|
6 |
ZHAO Xinyuan, JIN Yang, YANG Lijia,et al. Promotion of SIRT1 protein degradation and lower SIRT1 gene expression via reactive oxygen species is involved in Sb-induced apoptosis in BEAS-2b cells[J]. Toxicology Letters, 2018, 296:73-81. doi: 10.1016/j.toxlet.2018.07.047
|
7 |
LAI Ziyang, HE Mengchang, LIN Chunye,et al. Interactions of antimony with biomolecules and its effects on human health[J]. Ecotoxicology and Environmental Safety, 2022, 233:113317. doi: 10.1016/j.ecoenv.2022.113317
|
8 |
王文龙,胡洪营,刘玉红,等. 混凝和强化混凝对印染废水中锑(Ⅴ)的去除特性[J]. 环境科学学报,2019,39(10):3374-3380.
|
|
WANG Wenlong, HU Hongying, LIU Yuhong,et al. Comparative study on the removal of antinomy(Ⅴ) from dyeing and finishing wastewater by conventional and enhanced coagulation[J]. Acta Scientiae Circumstantiae,2019,39(10):3374-3380.
|
9 |
ZHANG Yang, DING Chunxia, GONG Daoxin,et al. A review of the environmental chemical behavior,detection and treatment of antimony[J]. Environmental Technology & Innovation, 2021, 24:102026. doi: 10.1016/j.eti.2021.102026
|
10 |
ZHANG Yidan, O’LOUGHLIN E J, KWON M J. Antimony redox processes in the environment:A critical review of associated oxidants and reductants[J]. Journal of Hazardous Materials, 2022, 431:128607. doi: 10.1016/j.jhazmat.2022.128607
|
11 |
FILELLA M, BELZILE N, CHEN Yuwei. Antimony in the environment:A review focused on natural waters[J]. Earth-Science Reviews, 2002, 57(1/2):125-176. doi: 10.1016/s0012-8252(01)00070-8
|
12 |
|
|
REN Jie, LIU Xiaowen, LI Jie,et al. Analysis of exposure status quo and environmental chemical behaviors of antimony in China[J]. Environmental Chemistry, 2020, 39(12):3436-3449. doi: 10.7524/j.issn.0254-6108.2019090701
|
13 |
LI Jingxin, ZHANG Yuxiao, ZHENG Shiling,et al. Anaerobic bacterial immobilization and removal of toxic Sb(Ⅲ) coupled with Fe(Ⅱ)/Sb(Ⅲ) oxidation and denitrification[J]. Frontiers in Microbiology, 2019, 10:360. doi: 10.3389/fmicb.2019.00360
|
14 |
BUSCHMANN J, CANONICA S, SIGG L. Photoinduced oxidation of antimony(Ⅲ) in the presence of humic acid[J]. Environmental Science & Technology, 2005, 39(14):5335-5341. doi: 10.1021/es050269o
|
15 |
ZHANG Haikun, HU Xiaoke. Bioadsorption and microbe-mediated reduction of Sb(Ⅴ) by a marine bacterium in the presence of sulfite/thiosulfate and the mechanism study[J]. Chemical Engineering Journal, 2019, 359:755-764. doi: 10.1016/j.cej.2018.11.168
|
16 |
HE Mengchang, WANG Ningning, LONG Xiaojing,et al. Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75:14-39. doi: 10.1016/j.jes.2018.05.023
|
17 |
|
|
LIU Xiaoyun, LIU Jingjing, KE Yong,et al. Research progress on speciation of antimony in natural water[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(5):1330-1346. doi: 10.11817/j.ysxb.1004.0609.2021-36569
|
18 |
HERATH I, VITHANAGE M, BUNDSCHUH J. Antimony as a global dilemma:Geochemistry,mobility,fate and transport[J]. Environmental Pollution, 2017, 223:545-559. doi: 10.1016/j.envpol.2017.01.057
|
19 |
KHAN U A, KUJALA K, NIEMINEN S P,et al. Arsenic,antimony,and nickel leaching from northern peatlands treating mining influenced water in cold climate[J]. Science of the Total Environment, 2019, 657:1161-1172. doi: 10.1016/j.scitotenv.2018.11.455
|
20 |
INAM M, KHAN R, PARK D,et al. Removal of Sb(Ⅲ) and Sb(Ⅴ) by ferric chloride coagulation:Implications of Fe solubility[J]. Water, 2018, 10(4):418. doi: 10.3390/w10040418
|
21 |
|
|
ZHENG Xinyu, ZHENG Huaili, ZHAO Siyi,et al. Review on the removal of algae in source water by coagulation technology[J]. Chemical Research and Application, 2015, 27(11):1619-1624. doi: 10.3969/j.issn.1004-1656.2015.11.002
|
22 |
|
|
SUN Yongjun, WU Weijie, XIAO Xuefeng,et al. Research progress on removal of algae in water by flocculation[J]. Chemical Research and Application, 2017, 29(2):153-159. doi: 10.3969/j.issn.1004-1656.2017.02.001
|
23 |
严煦世,范瑾初. 给水工程[M]. 4版. 北京:中国建筑工业出版社,1999:259-260.
|
24 |
WU Zhijun, HE Mengchang, GUO Xuejun,et al. Removal of antimony(Ⅲ) and antimony(Ⅴ) from drinking water by ferric chloride coagulation:Competing ion effect and the mechanism analysis[J]. Separation and Purification Technology, 2010, 76(2): 184-190. doi: 10.1016/j.seppur.2010.10.006
|
25 |
GUO Xuejun, WU Zhijun, HE Mengchang. Removal of antimony(Ⅴ) and antimony(Ⅲ) from drinking water by coagulation-flocculation-sedimentation(CFS)[J]. Water Research, 2009, 43(17):4327-4335. doi: 10.1016/j.watres.2009.06.033
|
26 |
CHENG Kuan, WANG Hongtao, LI Jie,et al. An effective method to remove antimony in water by using iron-based coagulants[J]. Water, 2019, 12(1):66. doi: 10.3390/w12010066
|
27 |
JOHNSON M D, LORENZ B B. Antimony remediation using ferrate(Ⅵ)[J]. Separation Science and Technology, 2015, 50(11):1611-1615. doi: 10.1080/01496395.2014.982294
|
28 |
ZHANG Heng, LUO Mengfan, ZHOU Peng,et al. Enhanced ferrate(Ⅵ) oxidation of sulfamethoxazole in water by CaO 2:The role of Fe(Ⅳ) and Fe(Ⅴ)[J]. Journal of Hazardous Materials, 2022, 425:128045. doi: 10.1016/j.jhazmat.2021.128045
|
29 |
WANG Shuchang, SHAO Binbin, QIAO Junlian,et al. Application of Fe(Ⅵ) in abating contaminants in water:State of art and knowledge gaps[J]. Frontiers of Environmental Science & Engineering, 2020, 15(5):1-21. doi: 10.1007/s11783-020-1373-3
|
30 |
高宝玉,黄鑫,姚广平,等. 钛盐混凝剂的研究进展[J]. 山东大学学报(工学版),2020,50(1):109-114.
|
|
GAO Baoyu, HUANG Xin, YAO Guangping,et al. Review of developments in titanium-based coagulants[J]. Journal of Shandong University(Engineering Science),2020,50(1):109-114.
|
31 |
GAN Yonghai, ZHANG Li, ZHANG Shujuan. The suitability of titanium salts in coagulation removal of micropollutants and in alleviation of membrane fouling[J]. Water Research, 2021, 205:117692. doi: 10.1016/j.watres.2021.117692
|
32 |
GAN Yonghai, LI Jingbiao, ZHANG Li,et al. Potential of titanium coagulants for water and wastewater treatment:Current status and future perspectives[J]. Chemical Engineering Journal, 2021, 406:126837. doi: 10.1016/j.cej.2020.126837
|
33 |
GUO Wenjing, FU Zhiyou, WANG Hao,et al. Removal of antimonate〔Sb(Ⅴ)〕 and antimonite〔Sb(Ⅲ)〕 from aqueous solutions by coagulation-flocculation-sedimentation(CFS):Dependence on influencing factors and insights into removal mechanisms[J]. Science of the Total Environment, 2018, 644:1277-1285. doi: 10.1016/j.scitotenv.2018.07.034
|
34 |
LIU Yuanli, LI Cheng, LOU Zimo,et al. Antimony removal from textile wastewater by combining PFS&PAC coagulation:Enhanced Sb(Ⅴ) removal with presence of dispersive dye[J]. Separation and Purification Technology, 2021, 275:119037. doi: 10.1016/j.seppur.2021.119037
|
35 |
LIU Yuanli, LOU Zimo, YANG Kunlun,et al. Coagulation removal of Sb(Ⅴ) from textile wastewater matrix with enhanced strategy:Comparison study and mechanism analysis[J]. Chemosphere, 2019, 237:124494. doi: 10.1016/j.chemosphere.2019.124494
|
36 |
ZHAO Chuanliang, ZHOU Junyuan, YAN Yi,et al. Application of coagulation/flocculation in oily wastewater treatment:A review[J]. Science of the Total Environment, 2021, 765:142795. doi: 10.1016/j.scitotenv.2020.142795
|
37 |
INAM M A, KHAN R, INAM M W,et al. Kinetic and isothermal sorption of antimony oxyanions onto iron hydroxide during water treatment by coagulation process[J]. Journal of Water Process Engineering, 2021, 41:102050. doi: 10.1016/j.jwpe.2021.102050
|
38 |
|
|
FENG Lishi, WANG Ji, PAN Chaoyi,et al. Study on emergency treatment of low temperature,low turbidity and antimony-contaminated wastewater by coagulation[J]. Industrial Water Treatment, 2019, 39(7):24-27. doi: 10.11894/iwt.2018-0588
|
39 |
QI Zenglu, JOSHI T P, LIU Ruiping,et al. Synthesis of Ce(Ⅲ)- doped Fe 3O 4 magnetic particles for efficient removal of antimony from aqueous solution[J]. Journal of Hazardous Materials, 2017, 329:193-204. doi: 10.1016/j.jhazmat.2017.01.007
|
40 |
肖妍. 混凝沉淀法去除水中Sb(Ⅲ)、Sb(Ⅴ)的效能及基质影响研究[D]. 西安:西安建筑科技大学,2021.
|
|
XIAO Yan. Study on the efficiency of coagulation sedimentation to remove Sb(Ⅲ) and Sb(Ⅴ) from water and the influence of matrix[D]. Xi’an:Xi’an University of Architecture and Technology,2021.
|
41 |
李景彪. 钛混凝在印染废水除锑及膜滤回用中的适用性探究[D]. 南京:南京大学,2021.
|
|
LI Jingbiao. Applicability evaluation of titanium coagulation in antimony removal from dyeing wastewater before membrane filtration for water reuse[D]. Nanjing:Nanjing University,2021.
|
42 |
史成超,李威,李浩铭,等. 钙强化硫酸亚铁对印染废水中锑的去除研究[J]. 环境污染与防治,2021,43(6):708-711.
|
|
SHI Chengchao, LI Wei, LI Haoming,et al. Removal of antimony in printing and dyeing wastewater by calcium-enhanced ferrous sulfate[J]. Environmental Pollution & Control,2021,43(6):708-711.
|
43 |
LI Qiao, MA Xinyue, QI Chengsi,et al. Facile preparation of novel magnetic mesoporous FeMn binary oxides from Mn encapsulated carboxymethyl cellulose-Fe(Ⅲ) hydrogel for antimony removal from water[J]. Science of the Total Environment, 2022, 821:153529. doi: 10.1016/j.scitotenv.2022.153529
|
44 |
|
|
LIU Hailong, WANG Dongsheng, WANG Min,et al. Requirement for hydrodynamic conditions in enhanced coagulation[J]. China Water & Wastewater, 2006, 22(5):1-4. doi: 10.3321/j.issn:1000-4602.2006.05.001
|
45 |
MOREIRA V R, LEBRON Y A R, SANTOS L V S,et al. Arsenic contamination,effects and remediation techniques:A special look onto membrane separation processes[J]. Process Safety and Environmental Protection, 2021, 148:604-623. doi: 10.1016/j.psep.2020.11.033
|
46 |
JIANG Shanxue, LI Yuening, LADEWIG B P. A review of reverse osmosis membrane fouling and control strategies[J]. Science of the Total Environment, 2017, 595:567-583. doi: 10.1016/j.scitotenv.2017.03.235
|
47 |
DU Junqun, ZHANG Baogang, LI Jiaxin,et al. Decontamination of heavy metal complexes by advanced oxidation processes:A review[J]. Chinese Chemical Letters, 2020, 31(10):2575-2582. doi: 10.1016/j.cclet.2020.07.050
|
48 |
RAN Zhilin, YAO Meng, HE Weipeng,et al. Efficiency analysis of enhanced Sb(Ⅴ) removal via dynamic preloaded floc in coordination with ultrafiltration[J]. Separation and Purification Technology, 2020, 249:117115. doi: 10.1016/j.seppur.2020.117115
|
49 |
MELLITI E, TOUATI K, ABIDI H,et al. Iron fouling prevention and membrane cleaning during reverse osmosis process[J]. International Journal of Environmental Science and Technology, 2019, 16(7):3809-3818. doi: 10.1007/s13762-018-1899-0
|
50 |
WU Bingdang, LI Jingbiao, GAN Yonghai,et al. Titanium coagulation simplified removal procedure and alleviated membrane fouling in treatment of antimony-containing wastewater[J]. ACS ES&T Engineering, 2021, 1(7):1094-1103. doi: 10.1021/acsestengg.1c00074
|
51 |
KANG M, KAMEI T, MAGARA Y. Comparing polyaluminum chloride and ferric chloride for antimony removal[J]. Water Research, 2003, 37(17):4171-4179. doi: 10.1016/s0043-1354(03)00351-8
|
52 |
WU Bingdang, LI Jingbiao, GAN Yonghai,et al. Titanium xerogel as a potential alternative for polymeric ferric sulfate in coagulation removal of antimony from reverse osmosis concentrate[J]. SSRN Electronic Journal, 2022: 291:120863. doi: 10.1016/j.seppur.2022.120863
|
53 |
CHOI P J,LIM S, SHON H,et al. Incorporation of negatively charged silver nanoparticles in outer-selective hollow fiber forward osmosis(OSHF-FO) membrane for wastewater dewatering[J]. Desalination, 2022, 522:115402. doi: 10.1016/j.desal.2021.115402
|
54 |
GWAK G, KIM D I, HONG S. New industrial application of forward osmosis(FO):Precious metal recovery from printed circuit board(PCB) plant wastewater[J]. Journal of Membrane Science, 2018, 552:234-242. doi: 10.1016/j.memsci.2018.02.022
|
55 |
HUANG Manhong, LIANG Zheng, REN Longfei,et al. Robust mitigation of FO membrane fouling by coagulation-floatation process:Role of microbubbles[J]. Desalination, 2022, 531:115693. doi: 10.1016/j.desal.2022.115693
|
56 |
ZHOU Rui, LIU Fangyuan, DU Xinyuan,et al. Removal of metronidazole from wastewater by electrocoagulation with chloride ions electrolyte:The role of reactive chlorine species and process optimization[J]. Separation and Purification Technology, 2022, 290:120799. doi: 10.1016/j.seppur.2022.120799
|
57 |
CAO Di, GUO Tao, ZHAO Xu. Treatment of Sb(Ⅴ) and Co(Ⅱ) containing wastewater by electrocoagulation and enhanced Sb(Ⅴ) removal with Co(Ⅱ) presence[J]. Separation and Purification Technology, 2019, 227:115649. doi: 10.1016/j.seppur.2019.05.091
|
58 |
DONG Wenjie, GU Xiaorong, SHU Yu,et al. Pulse electrocoagulation combined with a coagulant to remove antimony in wastewater[J]. Journal of Water Process Engineering, 2022, 47:102749. doi: 10.1016/j.jwpe.2022.102749
|
59 |
GÖDE J N, SOUZA D H, TREVISAN V,et al. Application of the Fenton and Fenton-like processes in the landfill leachate tertiary treatment[J]. Journal of Environmental Chemical Engineering, 2019, 7(5):103352. doi: 10.1016/j.jece.2019.103352
|
60 |
CAO H T, KHUE D N, NGUYEN N T T,et al. Insight into removal TOC and NH 4 + from mature landfill leachate using coupled bio-coagulation from Moringa oleifera seeds and ZVI/H 2O 2 process[J]. Journal of Water Process Engineering, 2021, 42:102112. doi: 10.1016/j.jwpe.2021.102112
|
61 |
王麒,薛罡,钱雅洁,等. ZVI类Fenton-混凝同步去除印染废水中苯胺、Cr6+、锑[J]. 工业水处理,2019,39(9):87-90.
|
|
WANG Qi, XUE Gang, QIAN Yajie,et al. Simultaneous removal of aniline,hexavalent chromium and antimony in textile wastewater by Fenton-like process[J]. Industrial Water Treatment,2019,39(9):87-90.
|
62 |
XUE Gang, WANG Qi, QIAN Yajie,et al. Simultaneous removal of aniline,antimony and chromium by ZVI coupled with H 2O 2:Implication for textile wastewater treatment[J]. Journal of Hazardous Materials, 2019, 368:840-848. doi: 10.1016/j.jhazmat.2019.02.009
|