| 1 | Huang Cong ,  Liu Qian ,  Chen Chuan , et al.  Elemental sulfur recovery and spatial distribution of functional bacteria and expressed genes under different carbon/nitrate/sulfide loadings in up-flow anaerobic sludge blanket reactors[J]. Journal of Hazardous Materials, 2017, 324, 48- 53. doi: 10.1016/j.jhazmat.2016.03.024
 | 
																													
																						| 2 | Choi E ,  Rim J M .  Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment[J]. Water Science and Technology, 1991, 23, 7- 9. URL
 | 
																													
																						| 3 | Katsuji U ,  Keiko K ,  Kenji I , et al.  Potential availability of anaerobic treatment with digester slurry of animal waste for the reclamation of acid mine water containing sulfate and heavy metals[J]. Journal of Fermentation Technology, 1988, 66 (1): 43- 50. doi: 10.1016/0385-6380(88)90128-8
 | 
																													
																						| 4 | Lu Xueqin ,  Zhen Guangyin ,  Ni Jialing , et al.  Effect of influent COD/SO42- ratios on biodegradation behaviors of starch wastewater in an up-flow anaerobic sludge blanket(UASB) reactor[J]. Bioresource Technology, 2016, 214, 175- 183. doi: 10.1016/j.biortech.2016.04.100
 | 
																													
																						| 5 | Liang Jiahao ,  Wang Qinghong ,  Li Q X , et al.  Aerobic sludge granulation in shale gas flowback water treatment: Assessment of the bacterial community dynamics and modeling of bioreactor performance using artificial neural network[J]. Bioresource Technology, 2020, 313, 123687. doi: 10.1016/j.biortech.2020.123687
 | 
																													
																						| 6 | Nair V V ,  Dhar H ,  Kumar S , et al.  Artificial neural network based modeling to evaluate methane yield from biogas in a laboratory-scale anaerobic bioreactor[J]. Bioresource Technology, 2016, 217, 90- 99. doi: 10.1016/j.biortech.2016.03.046
 | 
																													
																						| 7 | Basu B ,  Singh M P ,  Kapur G S , et al.  Prediction of biodegradability of mineral base oils from chemical composition using artificial neural networks[J]. Tribology International, 1998, 31 (4): 159- 168. doi: 10.1016/S0301-679X(97)00078-9
 | 
																													
																						| 8 | 国家环境保护总局.  水和废水监测分析方法[M]. 4版 北京: 中国环境科学出版社, 2005: 31- 57. | 
																													
																						| 9 | Zhou Jiemin ,  Xing Jianmin , et al.  Effect of electron donors on the performance of haloalkaliphilic sulfate-reducing bioreactors for flue gas treatment and microbial degradation patterns related to sulfate reduction of different electron donors[J]. Biochemical Engineering Journal, 2015, 96, 14- 22. doi: 10.1016/j.bej.2014.12.015
 | 
																													
																						| 10 | Sabumon P C .  Development of enhanced sulphidogenesis process for the treatment of wastewater having low COD/SO42- ratio[J]. Journal of Hazardous Materials, 2008, 159 (2/3): 616- 625. | 
																													
																						| 11 | Hu Yong ,  Jing Zhaoqian ,  Sudo Y , et al.  Effect of influent COD/SO42- ratios on UASB treatment of a synthetic sulfate-containing waste-water[J]. Chemosphere, 2015, 130, 24- 33. doi: 10.1016/j.chemosphere.2015.02.019
 | 
																													
																						| 12 | Cheng Jun ,  Wang Xin ,  Si Tingting , et al.  Ignition temperature and activation energy of power coal blends predicted with back-propagation neural network models[J]. Fuel, 2016, 173, 230- 238. doi: 10.1016/j.fuel.2016.01.043
 | 
																													
																						| 13 | Philip A ,  Jian Z L ,  Portia O B , et al.  Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network[J]. Bioresource Technology, 2017, 228, 106- 115. doi: 10.1016/j.biortech.2016.12.045
 | 
																													
																						| 14 | Arindam S ,  Divya B ,  Kannan P .  Process integration and artificial neural network modeling of biological sulfate reduction using a carbon monoxide fed gas lift bioreactor[J]. Chemical Engineering Journal, 2020, 391, 123518. doi: 10.1016/j.cej.2019.123518
 | 
																													
																						| 15 | 王爱杰, 任南琪, 甄卫东, 等.  硫酸盐还原过程中SRB的限制性生态因子的BP神经网络建模与仿真[J]. 环境科学学报, 2001, 21 (3): 267- 270. doi: 10.3321/j.issn:0253-2468.2001.03.003
 | 
																													
																						| 16 | Reyes-Alvarado L C ,  Okpalanze N N ,  Kankanala D , et al.  Forecasting the effect of feast and famine conditions on biological sulphate reduction in an anaerobic inverse fluidized bed reactor using artificial neural networks[J]. Process Biochemistry, 2017, 55, 146- 161. doi: 10.1016/j.procbio.2017.01.021
 |